Stop scaling and start tuning

Matt Burke - https://mattburke.dev

https://mattburke.dev

“Customer states reports are too slow”

- JIRA API-52301

Cloud is a great way to trade $
for performance

Response Time

Database Size

Acceptable Response Time

5o
Estimated costs per month

~ Compute

Cost per VCore (in USD)

GeneralPurposs - Gens

VCores selected
Provisioned

~ Storage

Cost per GB (in USD)

Max storage selected (in GB)
Data max size + log storage

~ Discount
32 GB storage included

Azure Hybrid Benefit

Estimated total

$825.27

$206.32

$35.33

§0.14

256

$4.42
§4.42

$0.00

$856.18

Response Time

Database Size

Acceptable Response Time

£

Estimated costs per month

~ Compute $1,650.54

Cost per VCore (in USD) $206.32

GeneralPurpose - GenS

VCores selected 8
Provisioned

A~ Storage $35.33
Cost per GB (in USD) $0.14
Max storage selected (in GB) 256

Data max size + log storage

~ Discount $4.42

32 GB storage included $4.42

Azure Hybrid Benefit $0.00
Estimated total $1,681.45

Response Time

<o

Estimated costs per month

~ Compute $3,301.08
Cost per VCore (in USD) $206.32
GeneralPurpose - Gens
VCores selected 16
Provisioned

A~ Storage $35.33
Cost per GB (in USD) $0.14

s Max storage selected (in GB) 256
Acceptable Response Time Sea s - o

~ Discount $4.42
32 GB storage included $4.42
Azure Hybrid Benefit $0.00

Estimated total $3,332.00

Database Size

Response Time

Max sto

Data maxX sizZe -

A~ Discount

32 GB storage included

rage selected (in GE)

log storage

Azure Hybrid Benefit

256

$4.42

§4.42

$0.00 kse Time

$16,536.33

5AA2

5000

8 '283 62

oS

Estimated costs per month

~ Compute $3,301.08
Cost per VCore (in USD) $206.32
GeneralPurposs - Gens
VCores selected 16
Provisioned

A~ Storage $35.33
Cost per GB (in USD) $0.14
Max storage selected (in GB) 256

Data max size = log storage

~ Discount $4.42

32 GB storage included $4.42

Azure Hybrid Benefit $0.00
Estimated total $3,332.00

Paying more Is not necessarily
wrong

You can’t outspend O(N")

Response Time

|

|

1

Database Size

Acceptable Response Time

g1t checkout -b fix/performance

x Edit Export v -I

Datasource Prometheus ~ Job v Nodename v Instance v (4} GitHub | (4 Grafana | () Last24hours v @&) Refresh 1m v

v Quick CPU / Mem / Disk

Pressure © CPUBusy © SysLoad © RAMUsed © SWAP Used © Root FS Used © CPU Co... Reboot ... Uptime
N/A N/A N/A
NOCLE ROOLFS ... RAM To... SWAP ...

N/A N/A o N/A N/A N/A N/A N/A

v Basic CPU / Mem / Net / Disk

CPU Basic © Memory Basic ©

No data No data

Network Traffic Basic © Disk Space Used Basic &

No data No data

First things first: Monitoring

Diagnostics

Establish Baselines

Justify the cost

\) APPDYNAMIC
e’y

ZIPKIN
Y hew relic

i.fadynalrace

OpenTelemetry O.goneycomb -
o o

Pick one and learn it

Zipkin z.

Search by trace ID

Xp EN v {o

shopdemo: get metrics = SPAN TABLE =

Duration 891.186ms | Services 1 @ Total Spans 7 @Trace ID 8b5bc0d5350f53bbc91005fa64f7¢c7b7

db.connection_id

db.connection_string

db.name

Oms 297.062ms 594.124ms 891.186ms _
I I Service name Span name
| shopdemo postgres
Span ID Parent ID
—— 7 Foaus o colonia g e > 79bfd3b1ef79a836 ea92c0a55297513a
Oms 297.062ms 594.124ms 891.186ms
shopdemo: get metrics 891.186ms Annotation A
shopdemo: postgres 86.280ms
222.071ms 320.246ms 418.422ms 516.597ms
shopdemo: postgres 133.762ms
——
shopdemo: postgres 294.526ms Start Time 11/13 19:35:58.469
M
shopdemo: postgres | " 54.679ms 222.071ms Value Client Start
shopdemo: postgres 81.785ms Address shopdemo
f——
shopdemo: postgres 223.176ms
M .
Start Time 11/13 19:35:58.761
received-first-
514.060ms Value
response
Address shopdemo
Start Time 11/13 19:35:58.764
516.597ms Value Client Finish
Address shopdemo
Tags A

86

Host=Ilocalhost;Port=5432;Dat
abase=postgres;Username=p
ostgres;Maximum Pool
Size=10

postgres

SELECT p.id as product_id,
p.name as product_name,
p.sku, SUM(ol.quantity) as
total_quantity,
SUM(ol.quantity *
ol.unit_price) as

Ipkin

shopdemo: get metrics

Duration 891.186ms | Services 1 | Total Spans 7 Trace ID 8b5bc0d5350f53bbc91005fa64f7c7b7

Oms 297.062ms 594.124ms 891.186ms
Al e Focus on selected span ® >

| Oms 297.062ms 594.124ms 891.186ms
shopdemo: get metrics 891.186ms
—

a shopdemo: postgres 86.280ms
shopdemo: postgres 133.762ms

lf]
shopdemo: postgres 294.526ms
M
shopdemo: postgres 54.679ms
|
shopdemo: postgres 81.785ms
.
shopdemo: postgres 223.176ms

M

Search by trace ID

YA EN @

bc91005fa64f7c7b7

52MS 594.124ms 891.186ms

e |

r

o) Focus on selected span ® >

891.186ms

891.186ms
—
86.280ms

297.062ms 594.124ms

133.762ms
294.526ms
54.679ms
81.785ms

223.176ms
lr]

Service name

shopdemo

Span ID

79bfd3b1ef79a836

Annotation

222.071ms

222.071ms

514.060ms

516.597ms

Tags

320.246ms

Start Time

Value

Address

Start Time

Value

Address

Start Time

Value

Address

SPAN TABLE

Span name

postgres

Parent ID
ea92c0a55297513a

N

418.422ms 516.597ms

11/13 19:35:58.469
Client Start

shopdemo

11/13 19:35:58.761

received-first-
response

shopdemo

11/13 19:35:58.764
Client Finish

shopdemo

Jiailt 1 imanico

516.597ms Value

Address

Tags

db.connection_id

db.connection_string

db.name

db.statement

db.system

11719 1J.9J.J0./7 VU T

Client Finish

shopdemo

86

Host=localhost;Port=5432;Dat
abase=postgres;Username=p
ostgres;Maximum Pool
Size=10

postgres

SELECT p.id as product_.id,
p.name as product_name,
p.sku, SUM(ol.quantity) as
total_quantity,
SUM(ol.quantity *
ol.unit_price) as
total_revenue,
COUNT(DISTINCT
ol.order_id) as order_count,
AVG(ol.unit_price) as
avg_unit_price FROM
products p INNER JOIN
order_lines ol ON p.id =
ol.product_id INNER JOIN
orders o ON ol.order_id = o.id
WHERE o.created_at >=

@ StartDate AND
o.created_at < @EndDate
GROUP BY p.id, p.name,
p.sku ORDER BY
total_revenue DESC LIMIT 15

postgresql

Let it bake

2 Search by trace ID

i 2 Search by trace ID
shopdemo: get orm/orders = SPANTABLE = f o y
on Services Spans 2)] :
Duration 9.044s | Services 1 Spans 383 Trace ID 79d739306831d1b750e5114181bb60a7 shopdemo: get metrics = SPAN TABLE
oms 3.015s 6.0295 9.044s
I 1 Service name Span name Duration 776.323ms S 1 7 ID 5d0f0f70a79td3217051c47616b3f113
shopdemo get orm/orders
258.774ms 517.549ms 776.323ms N N
Span ID Parent ID == 1 Service name Span name
v 3 B €d339c97181eb73d none shopdemo get metrics
. ots 500 oous Span ID Parent ID
ms s s .044s
R A 25132ee24d884013 none
! Annotation ~ il g o>
shopdemo: posigres = 101.179ms Oms 258.774ms 517.549ms 776.323ms
shopdemo: postgres - 101517ms OmS 3015 50295 9 0dds shopdemo: get metrics 776.323ms Annotation N
shopdemo: postgres 675us shopdemo: postgres 77.135ms - PO e aome
| Start Time 11/13 20:19:12.114 |————] oms 258.774ms 517.549ms 7
shopdemo: postgres 684ps shopdemo: postgres 83.543ms | |
[Oms Value Server Start [—
shopdemo: postgres | 549s shopdemo: postgres 246.759ms Start Time 11/13 20:27:26.415
shopdemo: postres | s81us Address shopdemo shopdemo: posigres 56509ms gmg Value Server Start
— ?
shopdemo: postgres | 441us Start Time 1113 20:19:21.158 shopdemo: posigres — sa78ms Address shopdemo
shopdemo: postgres 467ps 00445 Value Server Finish shopdemo: postgres 224.621ms
| . Start Time 11/13 20:27:27.192
shopdemo: postgres | 454us Add hopd
ress shopdemo
shopdemos postgres | 474ps 776.323ms Value Server Finish
shopdemo: postgres - 95.916ms Address shopdemo
shopdemo: postgres - 96.3a6ms 1398 ~
shopdemo: posigres | 738Ks http.request. method GET Tags A~
shopdemo: postgres 765ps
I filp-response siatus.code 200 http.request.method GET
shopdemo: postgres | 583ys oot ord p-req
p.route orm/orders
shopdemos: postgres 10us http.response.status_code 200
| network.protocol.version 1.1
shopdemo: postgres 510ps http.route metrics
[otel.library.name Microsoft.AspNetCore
shopdemo: postgres 540ps network.protocol.version 1.1
! otel.library.version 0.1.0
shopdemo: postgres | 486y1s otel.library.name Microsoft. AspNetCore
server.address localhost
shopdemo: postgres 502ps .
| otel.library.version 0.1.0
shopdemo: postgres 379us server.port 5109
| server.address localhost
shopdemo: postgres 386 oo instance.id 47d6934-2563-4825-9e64-46
vice.i i
! 949a31781e server.port 5109
- shopdemo: postgres - 93.589ms
S 47df6934-2563-4825-9e64-46
shopdemo: postgres — 93.944ms telemetry.sdk.language dotnet service.instance.id 949a31781e
hopdemo: post 634, telemetry.sdk.name opentelemetry
shopdemo: posigres | Hs telemetry.sdk.language dotnet
shopdemo: postgres 650us telemetry.sdk.version 1.13.1
L telemetry.sdk.name opentelemetry
telemetry.sdk.version 1.13.1

Many Small Spans Large Spans

2 Search by tra
shopdemo: get customer-reports/broken SPANTABLE =
Juration 5.743s Services 1 Tolal Spans 101 Trace ID 732¢78356138831d0663d40dbd2636fa
Oms 1.914s 3.828s 5.743s
I I Service name Span name
K‘ shopdemo get customer-reports/broken
Span ID Parent ID
A v ® > d307ae7e05ff07ee none
Oms 1.914s 3.828s 5.743s
shopdemo: get customer-reports/broken 5743 Annotation ~
shopdemo: postgres 2.124ms
| IOHY\ 1.914s 3.828s 5743‘~‘
shopdemo: postgres 470.656ms | |
——
shopdemo: postgres ' 5.155ms Start Time 11/13 20:32:22.115
shopdemo: postgres 482.422ms oms Value Server Start
h 3
shopdemo: postgres | 2.505ms Address shopdemo
shopdemo: postgres | 445.661ms
r—
shopdemos postgres 1.348ms Start Time 11/13 20:32:27.858
|
shopdemo: postgres 200.024ms 5.743s Value Server Finish
-
shopdemo: postgres 172.975ms Address shopdemo
|
shopdemo: postgres ' 6.944ms
shopdemo: postgres 158.785ms
P postg i— Tags ~
shopdemo: postgres 430.698ms
—
shopdemo: postgres. 453.792ms http.request.method GET
|—
shopdemo: postgres 452.141ms http.response.status_code 200
—
shopdemo: postgres | 549us http.route customer-reports/broken
shopdemo: postgres 151.410ms network.protocol.version 1.1
shopdemo: postgres 220.522ms otel.library.name Microsoft. AspNetCore
h 3 10.22
shopdemo: posigres V 0.229ms otel.library.version 0.1.0
shopdemo: postgres 211.810ms
— server.address localhost
shopdemo: postgres 232.817ms
f— server.port 5109
shopdemo: postgres 8885
! 6dc7ad14-
shopdemo: postgres — 500.488ms service.instance.id d45c-4ee0-8046-659aa6e2bc
shopdemo: postgres 234.056ms 48
J—
shopdemo: postgres 455.814ms telemetry.sdk.language dotnet
———
shopdemo: postgres | 1.444ms telemetry.sdk.name opentelemetry
" 221899,

Span Gaps

Zipkin : Find a trace - Jependencies -?a Search by trace ID YA EN + @

shopdemo: get orm/orders := SPAN TABLE

Duration 9.044s = Services 1 @ Total Spans 383 | Trace ID 79d739306831d1b750e5114181bb60a7

Oms 3.015s 6.029s 9.044s _
I——; I Service name Span name
shopdemo get orm/orders
Span ID Parent ID
N ® > ed339c97181eb73d none
Oms 3.015s 6.029s 9.044s
St — oo
| Annotation A
shopdemo: postgres 101.179ms
=
Oms 3.015s 6.029s 9.044s
shopdemo: postgres TS |
o]
shopdemo: postgres 675us
| Start Time 11/13 20:19:12.114
shopdemo: postgres 684us
| Oms Value Server Start
shopdemo: postgres 549us
| Address shopdemo
shopdemo: postgres | 581us
263~ shopdemo: postgres | 441us Start Time 11/13 20:19:21.158
h : post 467 -
shopdemo: postgres | He 9.044s Value Server Finish
shopdemo: postgres 454us
261 - | Address shopdemo
shopdemo: postgres | 474us
shopdemo: postgres 95.916ms
=
: Tags A
shopdemo: postgres 96.346ms
o
shopdemo: postgres | 738us http.request.method GET
hopd : post 765
Shopdemo- posigres | Hs http.response.status_code 200
shopdemo: postgres 583us
| http.route orm/orders
shopdemo: postgres 610us
| network.protocol.version 1.1
shopdemo: postgres 510us
| otel.library.name Microsoft.AspNetCore
shopdemo: postgres 540us
| otel.library.version 0.1.0
shopdemo: postgres 486s
|
shopdemo: postgres 502415 server.address localhost
|
shopdemo: postgres | 379us server.port 5109
249 -
shopdemo: postgres 386us o . 47df6934-2563-4825-9e64-46
| service.instance.id
949a31781e
shopdemo: postgres 93.589ms
- tel try.sdk.l dotnet
shopdemo: postgres - 93.944ms elemetry.sdx.lahguage otne
shopdemo: postgres 6341s telemetry.sdk.name opentelemetry

245 —

shopdemo: postgres 650s telemetry.sdk.version 1.13.1

http://localhost:5109/sql/orders

http://localhost:5109/sql/orders

SELECT

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

*

¥ ¥ K K K ¥ ¥ X ¥

FROM

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

orders:

order lines
order lines
order lines
order lines
order lines
order lines
order lines
order lines
order lines

WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE

order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d

NOONOOT PN -

SELECT

SELECT

*

¥ ¥ K K K ¥ ¥ X ¥

FROM

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

orders:

order lines
order lines
order lines
order lines
order lines
order lines
order lines
order lines
order lines

WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE

order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d

NOONOOT PN -

_m e ™M MO U "N "N "N "M ™O

SELECT *x FROM orders:

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

¥ ¥ K K K ¥ ¥ X ¥

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

order lines
order lines
order lines
order lines
order lines
order lines
order lines
order lines
order lines

WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE

order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d

NOONOOT PN -

Cause 1: Architecture

Order[] orders = LoadOrdersFromDb():

foreach (var orders 1n orders)

1
¥

order.Lines = LoadLinesFromDb(order.Id):

Order[] orders = LoadOrdersFromDb():

foreach (var orders 1n orders)

1
¥

order.Lines = LoadLinesFromDb(order.Id):

Order[] orders = LoadOrdersFromDb():

foreach (var orders 1n orders)

1
¥

order.Lines = LoadLinesFromDb(order.Id):

Order[] orders = LoadOrdersFromDb():

foreach (var orders 1n orders)

1
¥

order.Lines = LoadLinesFromDb(order.Id):

Orderl] orders = LoadOrdersFromDb():

foreach (var orders 1n orders)

1
¥

order.Lines = LoadLinesFromDb(order.Id):

OrderController

OrderService

OrdersRepository OrderlinesRepository

Orderl] orders = LoadOrdersFromDb():

foreach (var orders 1n orders)

1
¥

order.Lines = LoadLinesFromDb(order.Id):

Order[] orders = orderRepo.GetAll():

foreach (var orders 1n orders)

1
¥

order.Lines = linesRepo.GetAll(order.Id):

OrderController

OrderService

OrdersRepository OrderlinesRepository

OrderController

Responsebuilder

OrderlinesService
OrdersRepository OrderlinesRepository

Patabase

OrderController

Responsebuilder

OrderlinesService
OrdersRepository OrderlinesRepository

Patabase

GET /orders OrderController

Responsebuilder

OrderlinesService
OrdersRepository OrderlinesRepository

Patabase

GET /orders

OrderController

Responsebuilder

OrderService

OrdersRepository

Patabase

GET /orders? _include=lines OrderController

Responsebuilder

OrderlinesService
OrdersRepository OrderlinesRepository

Patabase

Cause 2: ORM Betrayal

Order[] orders = orderRepo.GetAll():
OrderResponsel] results = [];

foreach (var order 1n orders)

1

OrderResponse orderResponse = Map(orders);
orderResponse.Lines = Map(order.Lines):

results.Add(orderResponse):

¥

Order[] orders = orderRepo.GetAll():
OrderResponsel] results = [];

foreach (var order 1n orders)

1

OrderResponse orderResponse = Map(orders);
orderResponse.Lines = Map(order.Lines):

results.Add(orderResponse):

¥

Order[] orders = orderRepo.GetAll():
OrderResponsel] results = [1];

foreach (var order 1n orders)

1

OrderResponse orderResponse = Map(orders);
orderResponse.Lines = Map(order.Lines):

results.Add(orderResponse):

¥

Order[] orders = orderRepo.GetAll():
OrderResponsel] results = [];

foreach (var order in orders)

1

OrderResponse orderResponse = Map(orders);
orderResponse.Lines = Map(order.Lines):

results.Add(orderResponse):

¥

Order[] orders = orderRepo.GetAll():
OrderResponsel] results = [];

foreach (var order 1n orders)

1

OrderResponse orderResponse = Map(orders);
orderResponse.Lines = Map(order.Lines):

results.Add(orderResponse):

¥

Do you see the problem?

- Your Senior Developer in the 15th GitHub pull request comment

Order[] orders = orderRepo.GetAll():
OrderResponsel] results = [];

foreach (var order 1n orders)

1

OrderResponse orderResponse = Map(orders);
orderResponse.Lines = Map(order.Lines):

results.Add(orderResponse):

¥

Order[] orders = orderRepo.GetAll():
OrderResponsel] results = [];

foreach (var order in orders)
1
OrderResponse orderResponse = Map(orders):;

orderResponse.Lines = Map(order.Lines);
N

results.Add(orderResponse):

’ Another VB query!

Solution 1: Eager Loading

SELECT

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

*

¥ ¥ K K K ¥ ¥ X ¥

FROM

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

orders:

order lines
order lines
order lines
order lines
order lines
order lines
order lines
order lines
order lines

WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE
WHERE

order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d
order 1d

NOONOOT PN -

SELECT * FROM orders
JOIN order lines
ON orders.id = order lines.order 1d

SELECT * FROM orders
JOIN order lines
ON orders.id = order lines.order 1d

dbContext.Orders

.Include(o => o.Lines)
.ToList()

“Eager Loading”

“Includes”

OrderController

Responsebuilder

OrderlinesService
OrdersRepository OrderlinesRepository

Patabase

OrderController

Responsebuilder

OrderlinesService
OrdersRepository OrderlinesRepository

Patabase

OrderController

Responsebuilder

OrderService

OrdersRepository

Patabase

“Ugh, reworking the whole stack to fix this
will get take a million points and make my
PM mad at me”

- Me

“There must be an easier way!”

- Me

Solution 2: Batching

SELECT *x FROM orders;

SELECT *x FROM order lines
WHERE order id in (1,2,3,4,5,6,7,8,9,10):

“Split Query”

“Batch Query”

OrderController

Responsebuilder

OrderlinesService
OrdersRepository OrderlinesRepository

Patabase

OrderController

Teach it ‘get many by ids”

Responsebuilder)
>

OrderlinesService
OrdersRepository OrderlinesRepository

Patabase

const orders = orderService.getAll()
const ids = orders.map(o => o0.1id):

const lines =
orderLinesService.getByIds(1ids):

// TODO: match lines to orders

const orders = orderService.getAll()
const ids = orders.map(o => o0.1id):

const lines =
orderLinesService.getByIds(1ids):

// TODO: match lines to orders

const orders = orderService.getAll()
const ids = orders.map(o => o0.1d):

const lines =
orderLinesService.getByIds(1ids):

// TODO: match lines to orders

const orders = orderService.getAll()
const ids = orders.map(o => o0.1id):

const lines =
orderLinesService.getByIds(1ids):

// TODO: match lines to orders

http://localhost:5109/sal/orders-
split-query

http://localhost:5109/sql/orders-split-query
http://localhost:5109/sql/orders-split-query

Run with SQL Logging Enabled

B dotnet run

FROM products AS p
WHERE p.id = @__p_ 0
LIMIT 1
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
Executed DbCommand (1ms) [Parameters=[@__p_0='?' (DbType = Inté4)], CommandType='Text', CommandTimeout='30"]
SELECT p.id, p.brand, p.category, p.cost, p.description, p.is_active, p.name, p.price, p.sku, p.stock_quantity, p.weight
FROM products AS p
WHERE p.id = @__p_©
LIMIT 1
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
Executed DbCommand (92ms) [Parameters=[@__p_0='?' (DbType = Inté64)], CommandType='Text', CommandTimeout='30"]
SELECT o.1d, o.discount_percent, o.line_number, o.order_id, o.product_id, o.quantity, o.tax_amount, o.unlit_price
FROM order_lines AS o
WHERE o.order _id = @__p_®©
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
Executed DbCommand (1ms) [Parameters=[@__p_0='?' (DbType = Inté4)], CommandType='Text', CommandTimeout='30"]
SELECT p.id, p.brand, p.category, p.cost, p.description, p.is_active, p.name, p.price, p.sku, p.stock_quantity, p.weight
FROM products AS p
WHERE p.id = @__p_©
LIMIT 1
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
Executed DbCommand (@ms) [Parameters=[@__p 0='?' (DbType = Inté4)], CommandType='Text', CommandTimeout='30"]
SELECT p.id, p.brand, p.category, p.cost, p.description, p.is_active, p.name, p.price, p.sku, p.stock_quantity, p.weight
FROM products AS p
WHERE p.1id = @__p_©
LIMIT 1
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
Executed DbCommand (@®ms) [Parameters=[@__p _0='?' (DbType = Inté4)], CommandType='Text', CommandTimeout='30"]
SELECT p.id, p.brand, p.category, p.cost, p.description, p.1is_active, p.name, p.price, p.sku, p.stock_quantity, p.weight
FROM products AS p
WHERE p.id = @__p_©
LIMIT 1
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
Executed DbCommand (@ms) [Parameters=[@__p_0='?' (DbType = Inté4)], CommandType='Text', CommandTimeout='30"]
SELECT p.1id, p.brand, p.category, p.cost, p.description, p.1is_active, p.name, p.price, p.sku, p.stock_quantity, p.weight
FROM products AS p
WHERE p.id = @__p_©
LIMIT 1
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
Executed DbCommand (1ms) [Parameters=[@__p_0='?' (DbType = Inté4)], CommandType='Text', CommandTimeout='30"]
SELECT p.id, p.brand, p.category, p.cost, p.description, p.is_active, p.name, p.price, p.sku, p.stock_quantity, p.weight
FROM products AS p
WHERE p.id = @__p_©
(7 I
info: Microsoft.EntityFrameworkCore.Database.Command[20101]
Executed DbCommand (@ms) [Parameters=[@__p _0='?' (DbType = Inté4)], CommandType='Text', CommandTimeout='30"]
SELECT p.id, p.brand, p.category, p.cost, p.description, p.1is_active, p.name, p.price, p.sku, p.stock_quantity, p.weight
FROM products AS p
WHERE p.1id = @__p_©
(7 I

Disable Lazy Loading

Order[] orders = orderRepo.GetAll():
OrderResponsel] results = [];

foreach (var order 1n orders)

1

OrderResponse orderResponse = Map(orders);
orderResponse.Lines = Map(order.Lines):

N
results.Add(orderResponse) ; ‘\

’ Patabase query!

Order[] orders = orderRepo.GetAll():
OrderResponsel] results = [];

foreach (var order 1n orders)

1

OrderResponse orderResponse = Map(orders);
orderResponse.Lines = Map(order.Lines):

N
results.Add(orderResponse) ; ‘\

} /
null

Drop your ORM and write some
SQL

< > attachments

create table folders (
Name 1d bigserial primary key,
N name text not null,
> 18 0001 parent_id bigint,
v 8 0002 foreign key (parent_id) references folders(id)
v @ drawings) :
B) Drawing Rev A.pdf

B) Drawing Rev B_v2 (Final) updated.pdf create table files (

B Drawing Rev B.pdf 1d bigserial primary key,
v @ marketing name text not null,

B back.jpg folder _1d bigint,

- size bigint not null,

& Demo Video.mp4 . . .
foreign key (folder_i1d) references folders(id)

B front.jpg
v B quality-reports
B test-run-003123.csv
> @ 0003

4 > attachments

create table folders (
Name 1d bigserial primary key,
N name text not null,
> 18 0001 parent_id bigint,
v 8 0002 foreign key (parent_id) references folders(id)
v @ drawings) :
B) Drawing Rev A.pdf

B) Drawing Rev B_v2 (Final) updated.pdf create table files (

B Drawing Rev B.pdf 1d bigserial primary key,
v @ marketing name text not null,

B back.jpg folder _1d bigint,

- size bigint not null,

& Demo Video.mp4 . . .
foreign key (folder_i1d) references folders(id)

B front.jpg
v B quality-reports
B test-run-003123.csv
> @ 0003

Good luck getting your ORM to
search that in one round-trip

with recursive cte as (
select f.%, name as path
from folders f where f.parent _i1id 1s null

union all
select
f.%,
cte.path || '/"' || f.name as path
from folders f join cte on f.parent_id = cte.1d
)
select files.id, cte.path || '/' || files.name as
path

from cte join files on files.folder i1d = cte.1d
order by path

with recursive cte as (
select f.%, name as path
from folders f where f.parent _i1id 1s null

union all
select
f.%,
cte.path || '/"' || f.name as path
from folders f join cte on f.parent_id = cte.1d
)
select files.id, cte.path || '/' || files.name as
path

from cte join files on files.folder i1d = cte.1d
order by path

2 Search by trace ID

i 2 Search by trace ID
shopdemo: get orm/orders = SPANTABLE = f o y
on Services Spans 2)] :
Duration 9.044s | Services 1 Spans 383 Trace ID 79d739306831d1b750e5114181bb60a7 shopdemo: get metrics = SPAN TABLE
oms 3.015s 6.0295 9.044s
I 1 Service name Span name Duration 776.323ms S 1 7 ID 5d0f0f70a79td3217051c47616b3f113
shopdemo get orm/orders
258.774ms 517.549ms 776.323ms N N
Span ID Parent ID == 1 Service name Span name
v 3 B €d339c97181eb73d none shopdemo get metrics
. ots 500 oous Span ID Parent ID
ms s s .044s
R A 25132ee24d884013 none
! Annotation ~ il g o>
shopdemo: posigres = 101.179ms Oms 258.774ms 517.549ms 776.323ms
shopdemo: postgres - 101517ms OmS 3015 50295 9 0dds shopdemo: get metrics 776.323ms Annotation N
shopdemo: postgres 675us shopdemo: postgres 77.135ms - PO e aome
| Start Time 11/13 20:19:12.114 |————] oms 258.774ms 517.549ms 7
shopdemo: postgres 684ps shopdemo: postgres 83.543ms | |
[Oms Value Server Start [—
shopdemo: postgres | 549s shopdemo: postgres 246.759ms Start Time 11/13 20:27:26.415
shopdemo: postres | s81us Address shopdemo shopdemo: posigres 56509ms gmg Value Server Start
— ?
shopdemo: postgres | 441us Start Time 1113 20:19:21.158 shopdemo: posigres — sa78ms Address shopdemo
shopdemo: postgres 467ps 00445 Value Server Finish shopdemo: postgres 224.621ms
| . Start Time 11/13 20:27:27.192
shopdemo: postgres | 454us Add hopd
ress shopdemo
shopdemos postgres | 474ps 776.323ms Value Server Finish
shopdemo: postgres - 95.916ms Address shopdemo
shopdemo: postgres - 96.3a6ms 1398 ~
shopdemo: posigres | 738Ks http.request. method GET Tags A~
shopdemo: postgres 765ps
I filp-response siatus.code 200 http.request.method GET
shopdemo: postgres | 583ys oot ord p-req
p.route orm/orders
shopdemos: postgres 10us http.response.status_code 200
| network.protocol.version 1.1
shopdemo: postgres 510ps http.route metrics
[otel.library.name Microsoft.AspNetCore
shopdemo: postgres 540ps network.protocol.version 1.1
! otel.library.version 0.1.0
shopdemo: postgres | 486y1s otel.library.name Microsoft. AspNetCore
server.address localhost
shopdemo: postgres 502ps .
| otel.library.version 0.1.0
shopdemo: postgres 379us server.port 5109
| server.address localhost
shopdemo: postgres 386 oo instance.id 47d6934-2563-4825-9e64-46
vice.i i
! 949a31781e server.port 5109
- shopdemo: postgres - 93.589ms
S 47df6934-2563-4825-9e64-46
shopdemo: postgres — 93.944ms telemetry.sdk.language dotnet service.instance.id 949a31781e
hopdemo: post 634, telemetry.sdk.name opentelemetry
shopdemo: posigres | Hs telemetry.sdk.language dotnet
shopdemo: postgres 650us telemetry.sdk.version 1.13.1
L telemetry.sdk.name opentelemetry
telemetry.sdk.version 1.13.1

Many Small Spans Large Spans

2 Search by tra
shopdemo: get customer-reports/broken SPANTABLE =
Juration 5.743s Services 1 Tolal Spans 101 Trace ID 732¢78356138831d0663d40dbd2636fa
Oms 1.914s 3.828s 5.743s
I I Service name Span name
K‘ shopdemo get customer-reports/broken
Span ID Parent ID
A v ® > d307ae7e05ff07ee none
Oms 1.914s 3.828s 5.743s
shopdemo: get customer-reports/broken 5743 Annotation ~
shopdemo: postgres 2.124ms
| IOHY\ 1.914s 3.828s 5743‘~‘
shopdemo: postgres 470.656ms | |
——
shopdemo: postgres ' 5.155ms Start Time 11/13 20:32:22.115
shopdemo: postgres 482.422ms oms Value Server Start
h 3
shopdemo: postgres | 2.505ms Address shopdemo
shopdemo: postgres | 445.661ms
r—
shopdemos postgres 1.348ms Start Time 11/13 20:32:27.858
|
shopdemo: postgres 200.024ms 5.743s Value Server Finish
-
shopdemo: postgres 172.975ms Address shopdemo
|
shopdemo: postgres ' 6.944ms
shopdemo: postgres 158.785ms
P postg i— Tags ~
shopdemo: postgres 430.698ms
—
shopdemo: postgres. 453.792ms http.request.method GET
|—
shopdemo: postgres 452.141ms http.response.status_code 200
—
shopdemo: postgres | 549us http.route customer-reports/broken
shopdemo: postgres 151.410ms network.protocol.version 1.1
shopdemo: postgres 220.522ms otel.library.name Microsoft. AspNetCore
h 3 10.22
shopdemo: posigres V 0.229ms otel.library.version 0.1.0
shopdemo: postgres 211.810ms
— server.address localhost
shopdemo: postgres 232.817ms
f— server.port 5109
shopdemo: postgres 8885
! 6dc7ad14-
shopdemo: postgres — 500.488ms service.instance.id d45c-4ee0-8046-659aa6e2bc
shopdemo: postgres 234.056ms 48
J—
shopdemo: postgres 455.814ms telemetry.sdk.language dotnet
———
shopdemo: postgres | 1.444ms telemetry.sdk.name opentelemetry
" 221899,

Span Gaps

Zipkin z.

Search by trace ID

Xp EN v {o

otel.library.name

shopdemo: get metrics = SPANTABLE =
Duration 776.323ms | Services 1 = Total Spans 7 @ Trace ID 5d0f0f70a79fd3217051¢c47616b3ff13
Oms 258.774ms 517.549ms 776.323ms _
1 | Service name Span name
| shopdemo get metrics
Span ID Parent ID
A~ ® > 25132ee24d884013 none
Oms 258.774ms 517.549ms 776.323ms
shopdemo: get metrics 776.323ms - Annotation A
shopdemo: postgres 77.135ms
Oms 258.774ms 517.549ms 776.323ms
shopdemo: postgres 83.543ms
[——
shopdemo: postgres 246.759ms Start Time 11/13 20:27:26.415
—
shopdemo: postgres 56.509ms oms Value Server Start
[r——
shopdemo: postgres 84.773ms Address shopdemo
[——
shopdemo: postgres 224.621 msI
— .
Start Time 11/13 20:27:27.192
776.323ms Value Server Finish
Address shopdemo
Tags A
http.request.method GET
http.response.status_code 200
http.route metrics
network.protocol.version 1.1

Microsoft.AspNetCore

otel.library.version 0.1.0
server.address localhost
server.port 5109

service.instance.id

telemetry.sdk.language
telemetry.sdk.name

telemetry.sdk.version

47df6934-2563-4825-9e64-46
949a31781e

dotnet
opentelemetry

1.13.1

http://localhost:5109/metrics?
range=today

http://localhost:5109/metrics?range=today
http://localhost:5109/metrics?range=today

SELECT
P.ID AS PRODUCT_ID,

P.NAME AS PRODUCT_NAME,

P.SKU,

SUM(OL.QUANTITY) AS TOTAL_QUANTITY,
SUM(OL.QUANTITY % OL.UNIT_PRICE) AS TOTAL_REVENUE,
COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT,
AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE

FROM

PRODUCTS P
INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID

INNER JOIN ORDERS O ON OL.ORDER_ID = 0.ID
WHERE

O.CREATED_AT >= '2025-12-09'

AND O.CREATED_AT < '2025-12-11'"

GROUP BY
P.1D,
P.NAME,
P.SKU

EXPLAIN SELECT
P.ID AS PRODUCT_ID,
P.NAME AS PRODUCT_NAME,
P.SKU,
SUM(OL.QUANTITY) AS TOTAL_QUANTITY,
SUM(OL.QUANTITY % OL.UNIT_PRICE) AS TOTAL_REVENUE,
COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT,
AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE

FROM

PRODUCTS P
INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID

INNER JOIN ORDERS O ON OL.ORDER_ID = 0.ID
WHERE

O.CREATED_AT >= '2025-12-09'

AND O.CREATED_AT < '2025-12-11'"
GROUP BY

P.1D,

P.NAME, http://localhost:8080/browser/
P.SKU

http://localhost:8080/browser/

Limit (cost=147418.55..147418.56 rows=5 width=123)
-> Sort (cost=147418.55..147418.56 rows=5 width=123)
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> GroupAggregate (cost=70450.79..147418.49 rows=5 width=123)
Group Key: p.1id
-> Incremental Sort (cost=70450.79..147418.33 rows=5 width=61)
Sort Key: p.1d, ol.order_1id
Presorted Key: p.1d
—> Nested Loop (cost=51208.96..147418.10 rows=5 width=61)
Join Filter: (p.id = ol.product_1id)
—> Index Scan using pk_products on products p
(cost=0.14..15.64 rows=100 width=43)
—> Materialize (cost=51208.81..147394.97 rows=5 width=26)
—> Gather (cost=51208.81..147394.95 rows=5 width=26)
Workers Planned: 2
—> Parallel Hash Join (cost=50208.81..146394.45
rows=2 width=26)
Hash Cond: (ol.order id = o.id)
—> Parallel Seq Scan on order_lines ol
(cost=0.00..89563.83 rows=2522583 width=26)
—> Parallel Hash (cost=50208.80..50208.80
rows=1 width=8)
—-> Parallel Seq Scan on orders o
(cost=0.00..50208.80 rows=1 width=8)
Filter: ((created at »>=
'2025-12-09 00:00:00+00"'::timestamp with time zone) AND (created at < '2025-12-11
PO:00:00+00'::timestamp with time zone))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order _lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order _lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
—-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order _lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order _lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1id, ol.order_1id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order _lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order _lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order _lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

http://localhost:8080/browser/

http://localhost:8080/browser/

Egﬁ -) - ? - @E@ - - o

pk_products Nested Loop Inner Incremental Sort Aggregate Sort Limit
Join
[TTT 0 i]
o - . - -»m
l il &,
order_lines Hash Inner Join Gather Materialize

- &

orders Hash

l

order lines

IAI
__'. — —

Hash Inner Join

]O\
O

0
v

O

Gather

_>?

Incremental Sort

Aggregate

e R —b

Sort

—

Limit

Sequential Scan

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order _lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order_lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order_lines ol
—> Parallel Hash
—-> Parallel Seqg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

L
v Nl
-

L

. mmeh e

[T
2 D

|“.

£ 134 l“‘ i.“.-"‘.‘ 2

N e

Voante

el L
e matars W o -
e antar N oL

e mahme s

vt .y

TWMESAVRYS

- AT R

[L
.oy~

..tvv“'

\—

mastasteh

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order _lines ol
—> Parallel Hash
—-> Parallel Seqg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order _lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order_lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1id
—> Incremental Sort
Sort Key: p.1d, ol.order_id
Presorted Key: p.1d
—-> Nested Loop
Join Filter: (p.id = ol.product_id)
—> Index Scan using pk_products on products p
—> Materialize
-> Gather
Workers Planned: 2
—> Parallel Hash Join
Hash Cond: (ol.order id = o.1id)
—> Parallel Seq Scan on order_lines ol
—> Parallel Hash
—> Parallel Seg Scan on orders o
Filter: ((created at >= '2025-12-09'
AND (created at < '2025-12-11"'))

CREATE INDEX 1dx orders created at
ON orders (created at):

CREATE INDEX 1dx order lines order 1d
ON order lines (order 1id)

CREATE INDEX 1dx orders created at
ON orders (created at):

CREATE INDEX 1dx order lines order 1d
ON order lines (order 1id)

CREATE INDEX 1dx orders created at
ON orders (created at):

CREATE INDEX 1dx order lines order 1d
ON order lines (order 1id)

CREATE INDEX 1dx orders created at
ON orders (created at):

CREATE INDEX 1dx order lines order 1d
ON order lines (order 1id)

CREATE INDEX 1dx orders created at
ON orders (created at):

CREATE INDEX 1dx order lines order 1d
ON order lines (order 1d)

http://localhost:5109/dev-tools

http://localhost:5109/dev-tools

At < '9025-12-11 00:00-00+0(Successfully run. Total query runtime: 62 msec. 16 rows affected.

Successfully run. Total query runtime: 53 msec. 16 rows affected.

Successfully run. Total query runtime: 64 msec. 16 rows affected.

LF Ln 4, Col 1

Limit
—-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1d
—-> Sort
Sort Key: p.id, ol.order_1id
—> Hash Joiln
Hash Cond: (ol.product_id = p.id)
—-> Nested Loop
—> Index Scan using 1dx_orders _created _at on orders o
Index Cond: ((created at >= '2025-12-09')
AND (created at < '2025-12-11"'))
—> Index Scan using 1dx_order_lines_order_id on order_lines ol
Index Cond: (order id = o.1id)
—> Hash
—> Seqg Scan on products p

Limit
—-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1d
—-> Sort
Sort Key: p.id, ol.order_1id
—> Hash Joiln
Hash Cond: (ol.product_id = p.id)
—-> Nested Loop
—> Index Scan using 1dx_orders created _at on orders o
Index Cond: ((created at >= '2025-12-09')
AND (created at < '2025-12-11"'))
—> Index Scan using 1dx_order_lines_order_id on order_lines ol
Index Cond: (order id = o.1id)
—> Hash
—> Seqg Scan on products p

Limit
—-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1d
—-> Sort
Sort Key: p.id, ol.order_1id
—> Hash Joiln
Hash Cond: (ol.product_id = p.id)
—-> Nested Loop
—> Index Scan using 1dx_orders created _at on orders o
Index Cond: ((created at >= '2025-12-09')
AND (created at < '2025-12-11"'))
—> Index Scan using 1dx_order_lines_order_id on order_lines ol
Index Cond: (order id = o.1id)
—> Hash
—> Seqg Scan on products p

SELECT
P.ID AS PRODUCT_ID,

P.NAME AS PRODUCT_NAME,

P.SKU,

SUM(OL.QUANTITY) AS TOTAL_QUANTITY,
SUM(OL.QUANTITY % OL.UNIT_PRICE) AS TOTAL_REVENUE,
COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT,
AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE

FROM

PRODUCTS P
INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID

INNER JOIN ORDERS O ON OL.ORDER_ID = 0.ID
WHERE

O.CREATED_AT >= '2025-12-09'

AND O.CREATED_AT < '2025-12-11'"

GROUP BY
P.1D,
P.NAME,
P.SKU

SELECT
P.ID AS PRODUCT_ID,

P.NAME AS PRODUCT_NAME,

P.SKU,

SUM(OL.QUANTITY) AS TOTAL_QUANTITY,
SUM(OL.QUANTITY % OL.UNIT_PRICE) AS TOTAL_REVENUE,
COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT,
AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE

FROM

PRODUCTS P
INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID

INNER JOIN ORDERS O ON OL.ORDER_ID = 0.ID
WHERE

O.CREATED_AT >= '2025-12-09'

AND O.CREATED_AT < '2025-12-11'"

GROUP BY
P.1D,
P.NAME,
P.SKU

SELECT
P.ID AS PRODUCT_ID,

P.NAME AS PRODUCT_NAME,

P.SKU,

SUM(OL.QUANTITY) AS TOTAL_QUANTITY,
SUM(OL.QUANTITY % OL.UNIT_PRICE) AS TOTAL_REVENUE,
COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT,
AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE

FROM

PRODUCTS P
INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID

INNER JOIN ORDERS O ON OL.ORDER_ID = 0.ID
WHERE

O.CREATED_AT >= '2025-12-09'

AND O.CREATED_AT < '2025-12-11'"

GROUP BY
P.1D,
P.NAME,
P.SKU

Limit
—-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1d
—-> Sort
Sort Key: p.id, ol.order_1id
—> Hash Joiln
Hash Cond: (ol.product_id = p.id)
—-> Nested Loop
—> Index Scan using 1dx_orders created _at on orders o
Index Cond: ((created at >= '2025-12-09')
AND (created at < '2025-12-11"'))
—> Index Scan using 1dx_order_lines_order_id on order_lines ol
Index Cond: (order id = o.1id)
—> Hash
—> Seqg Scan on products p

Limit
—-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1d
—-> Sort
Sort Key: p.id, ol.order_1id
—> Hash Joiln
Hash Cond: (ol.product_id = p.id)
—-> Nested Loop
—> Index Scan using 1dx_orders _created _at on orders o
Index Cond: ((created at >= '2025-12-09')
AND (created at < '2025-12-11"'))
—> Index Scan using 1dx_order_lines_order_id on order_lines ol
Index Cond: (order id = o.1id)
—> Hash
—> Seqg Scan on products p

Limit
-> Sort
Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
—> (GroupAggregate
Group Key: p.1d
-> Sort
Sort Key: p.id, ol.order_1id
—> Hash Join
Hash Cond: (ol.product_id = p.1id)
—-> Nested Loop
—> Index Scan using 1dx_orders _created _at on orders o
Index Cond: ((created at >= '2025-12-09')
AND (created at < '2025-12-11"'))
—> Index Scan using 1dx_order_lines_order_id on order_lines ol
Index Cond: (order id = o.1id)
—> Hash
—> Seqg Scan on products p

Index Might Not Be Chosen

Some operations are not
Indexable

CREATE INDEX 1dx customers name
ON customers(”name’):

SELECT
X

FROM customers
WHERE name ILIKE 'MattX’

CREATE INDEX 1dx customers name
ON customers(”name’):

SELECT
X

FROM customers
WHERE name ILIKE 'Matt’

CREATE INDEX 1dx customers name
ON customers(”name’):

S E I— E CT “Starts With” is easy in a sorted list

>k
FROM customers ‘g///
WHERE name ILIKE 'Matt’

CREATE INDEX 1dx customers name
ON customers(”name’):

SELECT
X

FROM customers /
WHERE name ILIKE ’'%Burke’

“Ends With” not so much

INDEX'ALISTHE THINGS

There Is such a thing as over-
Indexing

QUERY TEXT
EXPLAIN OUTPUT
$10B+ LLM TRAINING

PRETTY DECENT SUGGESTIONS

Use The Index,
Luke!

Free e-book on database

Index tuning by Markus
Winand

Caffeinate Your Queries: Brew Up Faster
SQL with Tuning

Tristan Chiappisi, Indigo Bay @ 8:30

2 Search by trace ID

i 2 Search by trace ID
shopdemo: get orm/orders = SPANTABLE = f o y
on Services Spans 2)] :
Duration 9.044s | Services 1 Spans 383 Trace ID 79d739306831d1b750e5114181bb60a7 shopdemo: get metrics = SPAN TABLE
oms 3.015s 6.0295 9.044s
I 1 Service name Span name Duration 776.323ms S 1 7 ID 5d0f0f70a79td3217051c47616b3f113
shopdemo get orm/orders
258.774ms 517.549ms 776.323ms N N
Span ID Parent ID == 1 Service name Span name
v 3 B €d339c97181eb73d none shopdemo get metrics
. ots 500 oous Span ID Parent ID
ms s s .044s
R A 25132ee24d884013 none
! Annotation ~ il g o>
shopdemo: posigres = 101.179ms Oms 258.774ms 517.549ms 776.323ms
shopdemo: postgres - 101517ms OmS 3015 50295 9 0dds shopdemo: get metrics 776.323ms Annotation N
shopdemo: postgres 675us shopdemo: postgres 77.135ms - PO e aome
| Start Time 11/13 20:19:12.114 |————] oms 258.774ms 517.549ms 7
shopdemo: postgres 684ps shopdemo: postgres 83.543ms | |
[Oms Value Server Start [—
shopdemo: postgres | 549s shopdemo: postgres 246.759ms Start Time 11/13 20:27:26.415
shopdemo: postres | s81us Address shopdemo shopdemo: posigres 56509ms gmg Value Server Start
— ?
shopdemo: postgres | 441us Start Time 1113 20:19:21.158 shopdemo: posigres — sa78ms Address shopdemo
shopdemo: postgres 467ps 00445 Value Server Finish shopdemo: postgres 224.621ms
| . Start Time 11/13 20:27:27.192
shopdemo: postgres | 454us Add hopd
ress shopdemo
shopdemos postgres | 474ps 776.323ms Value Server Finish
shopdemo: postgres - 95.916ms Address shopdemo
shopdemo: postgres - 96.3a6ms 1398 ~
shopdemo: posigres | 738Ks http.request. method GET Tags A~
shopdemo: postgres 765ps
I filp-response siatus.code 200 http.request.method GET
shopdemo: postgres | 583ys oot ord p-req
p.route orm/orders
shopdemos: postgres 10us http.response.status_code 200
| network.protocol.version 1.1
shopdemo: postgres 510ps http.route metrics
[otel.library.name Microsoft.AspNetCore
shopdemo: postgres 540ps network.protocol.version 1.1
! otel.library.version 0.1.0
shopdemo: postgres | 486y1s otel.library.name Microsoft. AspNetCore
server.address localhost
shopdemo: postgres 502ps .
| otel.library.version 0.1.0
shopdemo: postgres 379us server.port 5109
| server.address localhost
shopdemo: postgres 386 oo instance.id 47d6934-2563-4825-9e64-46
vice.i i
! 949a31781e server.port 5109
- shopdemo: postgres - 93.589ms
S 47df6934-2563-4825-9e64-46
shopdemo: postgres — 93.944ms telemetry.sdk.language dotnet service.instance.id 949a31781e
hopdemo: post 634, telemetry.sdk.name opentelemetry
shopdemo: posigres | Hs telemetry.sdk.language dotnet
shopdemo: postgres 650us telemetry.sdk.version 1.13.1
L telemetry.sdk.name opentelemetry
telemetry.sdk.version 1.13.1

Many Small Spans Large Spans

2 Search by tra
shopdemo: get customer-reports/broken SPANTABLE =
Juration 5.743s Services 1 Tolal Spans 101 Trace ID 732¢78356138831d0663d40dbd2636fa
Oms 1.914s 3.828s 5.743s
I I Service name Span name
K‘ shopdemo get customer-reports/broken
Span ID Parent ID
A v ® > d307ae7e05ff07ee none
Oms 1.914s 3.828s 5.743s
shopdemo: get customer-reports/broken 5743 Annotation ~
shopdemo: postgres 2.124ms
| IOHY\ 1.914s 3.828s 5743‘~‘
shopdemo: postgres 470.656ms | |
——
shopdemo: postgres ' 5.155ms Start Time 11/13 20:32:22.115
shopdemo: postgres 482.422ms oms Value Server Start
h 3
shopdemo: postgres | 2.505ms Address shopdemo
shopdemo: postgres | 445.661ms
r—
shopdemos postgres 1.348ms Start Time 11/13 20:32:27.858
|
shopdemo: postgres 200.024ms 5.743s Value Server Finish
-
shopdemo: postgres 172.975ms Address shopdemo
|
shopdemo: postgres ' 6.944ms
shopdemo: postgres 158.785ms
P postg i— Tags ~
shopdemo: postgres 430.698ms
—
shopdemo: postgres. 453.792ms http.request.method GET
|—
shopdemo: postgres 452.141ms http.response.status_code 200
—
shopdemo: postgres | 549us http.route customer-reports/broken
shopdemo: postgres 151.410ms network.protocol.version 1.1
shopdemo: postgres 220.522ms otel.library.name Microsoft. AspNetCore
h 3 10.22
shopdemo: posigres V 0.229ms otel.library.version 0.1.0
shopdemo: postgres 211.810ms
— server.address localhost
shopdemo: postgres 232.817ms
f— server.port 5109
shopdemo: postgres 8885
! 6dc7ad14-
shopdemo: postgres — 500.488ms service.instance.id d45c-4ee0-8046-659aa6e2bc
shopdemo: postgres 234.056ms 48
J—
shopdemo: postgres 455.814ms telemetry.sdk.language dotnet
———
shopdemo: postgres | 1.444ms telemetry.sdk.name opentelemetry
" 221899,

Span Gaps

Zipkin o Search by trace ID X\ EN v (o}

shopdemo: get customer-reports/broken = SPAN TABLE =

Duration 5.743s | Services 1 | Total Spans 101 | Trace ID 732¢78356138831d0663d40dbd2636fa

Oms 1.914s 3.828s 5.743s

shopdemo get customer-reports/broken
Span ID Parent ID
N ® > d307ae7e05ff07ee none
Oms 1.914s 3.828s 5.743s
W shopdemo: get customer-reports/broken 5.743s Annotation A
shopdemo: postgres 2.124ms
| Oms 1.914s 3.828s 5.743s
shopdemo: postgres 470.656ms
[——
shopdemo: postgres 5.155ms Start Time 11/13 20:32:22.115
shopdemo: postgres 482.422ms oms Value Server Start
shopdemo: postgres 2.505
P POst9 ms Address shopdemo
shopdemo: postgres | 445.661ms
[y _
shopdemo: postgres 1 348ms Start Time 11/13 20:32:27.858
r—
shopdemo: postgres 172.975ms Address shopdemo
]
shopdemo: postgres H 6.944ms
shopdemo: postgres 158.785ms
p postg — Tags ~
shopdemo: postgres 430.698ms
(——
shopdemo: postgres 453.792ms http.request.method GET
[r——
shopdemo: postgres 452.141ms http.response.status_code 200
[——
shopdemo: postgres | 549us http.route customer-reports/broken
shopdemo: postgres 151.410ms network.protocol.version 1.1
o g
shopdemo: postgres M 220.522ms otel.library.name Microsoft.AspNetCore
shopdemo: postgres 10.229 . .
P POst9 I ms otel.library.version 0.1.0
shopdemo: postgres 211.810ms
— server.address localhost
shopdemo: postgres 232.817ms
|r— server.port 5109
shopdemo: postgres 888us
| 6dc7ad14-
shopdemor: postgres — 500.488ms service.instance.id d45c-4ee0-8046-659aa6e2bc
shopdemo: postgres 234.056ms 48
[r—
shopdemo: postgres 455.814ms telemetry.sdk.language dotnet
[—
shopdemo: postgres 1.444ms telemetry.sdk.name opentelemetry

Service name

Span name

Duration 5.743s @ Services 1 | Total Spans 101 @ Trace ID 732¢c78356138831d0663d40dbd2636fa

Oms 1.914s 3.828s 5.743s
Service |
shopde
Span ID
AV o) Focus on selected span Reset focus ® > d307ac
Oms 1.914s 3.828s 5.743s
shopdemo: get customer-reports/broken 5.743s Annots
shopdemo: postgres 2.124ms
| Oms
shopdemo: postgres 470.656ms
[——
shopdemo: postgres | 5.155ms
shopdemo: postgres 482.422ms oms
shopdemo: postgres | 2.505ms
shopdemo: postgres | 445.661ms
[——
shopdemo: postgres | 1.348ms
shopdemo: postgres 200.024ms 5.74%
|—
shopdemo: postgres 172.975ms
.
shopdemo: postgres | 6.944ms
shopdemo: postgres 158.785ms
g | | Tags
shopdemo: postgres 430.698ms
f——
shopdemo: postgres 453.792ms http.r
——
shopdemo: postgres 452.141ms http.r
[——
shopdemo: postgres | 549us http.r
shopdemo: postgres 151.410ms netwe
I
shopdemo: postgres 220.522ms otel.l
shopdemo: postgres 10.229ms .
PESTO- PSS | otel.
shopdemo: postgres 211.810ms
_ Serve
shopdemo: postgres 232.817ms
|r—] Serve
shopdemo: postgres | 888us

shopdemo: postgres _ _ 500.488ms

.
™S /r\vV'\ 71 4

Duration 5.743s
Oms
N v

Services 1

Oms

shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:
shopdemo:

shopdemo:

shopdemo:

postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

postgres

Total Spans 101

Trace |D 732¢78356138831d0663d40dbd2636fa

1.914s

1.914s

3.828s

3.828s

5.743s

®©® >

5.743s
5.743s

2.124ms
470.656ms
5.155ms
482.422ms
2.505ms
445.661ms
1.348ms
200.024ms
172.975ms
6.944ms
158.785ms
430.698ms
453.792ms
452.141ms
549us
151.410ms
220.522ms
10.229ms
211.810ms
232.817ms
888us

500.488ms

Service |

shopde

Span ID
d307a¢

Annote

Oms

Oms

5.74:

Tags

http.r
http.r
http.r
netwe
otel.li
otel.li
Serve

Serve

.
™S /r\V\ 71 ¢4

Duration 5.743s = Services 1 | Total Spans 101 @ Trace ID 732¢c78356138831d0663d40dbd2636fa

Oms 1.914s 3.828s 5.743s
Service |
shopde
Span ID
A | v | f ® > d307ac
Oms 1.914s 3.828s 5.743s
shopdemo: get customer-reports/broken 5.743s Annots
shopdemo: postgres 2.124ms
| Oms
shopdemo: postgres 470.656ms
[——
shopdemo: postgres | 5.155ms
shopdemo: postgres 482.422ms oms
shopdemo: postgres | 2.505ms
shopdemo: postgres | 445.661ms
[——
shopdemo: postgres 1.348ms

shopdemo: postgres 200.024ms 5.74%

I
Nothing happens for 24 seconds
I

shopdemo: postgres 6.944ms
shopdemo: postgres 158.785ms
p postg — Tags
shopdemo: postgres 430.698ms
f——
shopdemo: postgres 453.792ms http.r
]
shopdemo: postgres 452.141ms http.r
[——
shopdemo: postgres | 549us http.r
shopdemo: postgres 151.410ms netwt
I
shopdemo: postgres 220.522ms otel.l
shopdemo: postgres 10.229ms .
g POS'9 | otel.l
shopdemo: postgres 211.810ms
— Serve
shopdemo: postgres 232.817ms
. serve
shopdemo: postgres 888us

shopdemo: postgres _ _ 500.488ms

.
™S /r\V\ 71 ¢4

http://localhost:5109/customer-
reports/broken?count=5

http://localhost:5109/customer-reports/broken?count=5
http://localhost:5109/customer-reports/broken?count=5

The Connection Pool

Connections are expensive

Connection Pool

Request 1

Connection Pool

Request 1

Connection Pool

O

Request 1

Connection Pool

Request 1

Connection Pool

Connection Pool

Request 2

Connection Pool

O

Request 2

Connection Pool

Request 2

Connection Pool

Connection Pool

Connection Pool

Scenario: Many Concurrent
Requests

Connection Pool

Connection Pool

Connection Pool

Connection Pool

Connection Pool

Connection Pool

O
o ©

Connection Pool (max = 3)

Connection Pool (max = 3)

Request 1

Connection Pool (max = 3)

Connection Pool (max = 3)

Connection Pool (max = 3)

Connection Pool (max = 3)

const customers = awalt getTopCustomers();

for (const c of customers) {
c.stats = await getCustomerStats(customer.id)

¥

const customers = awalt getTopCustomers();

for (const ¢ of customers) {
c.stats = await getCustomerStats(customer.id)

¥

const customers = awalt getTopCustomers();

for (const c¢c of customers) {
c.stats = await getCustomerStats(customer.id)

¥

const customers = awalt getTopCustomers();

for (const c of customers) {
c.stats = await getCustomerStats(customer.id)

¥

const customers = awalt getTopCustomers();

awalt Promise.all(customers.map(async (c) => {
c.stats = await getCustomerStats(customer.id)

r);

const customers = awalt getTopCustomers();

awalt Promise.all(customers.map(async (c) => {
c.stats = await getCustomerStats(customer.id)

r);

const customers = awalt getTopCustomers();

awalt Promise.all(customers.map(async (c) => {
c.stats = await getCustomerStats(customer.id)

r);

awalt Promise.all(customers.map(async (c) => {
c.stats = await getCustomerStats(customer.id)

r);

’

20 PARALLELQUERIES

const customers = awalt getTopCustomers();

awalt Promise.all(customers.map(async (c) => {
c.stats = await getCustomerStats(customer.id)

r);

const customers = awalt getTopCustomers();

awalt Promise.all(customers.map(async (c) => {
c.stats = await getCustomerStats(customer.id)

r);

const customers = awalt getTopCustomers();

awalt pMap(customers, async (c) => A
c.stats = await getCustomerStats(customer.id)
}, { concurrency: 2 });

const customers = awalt getTopCustomers();

awalt pMap(customers, async (c) => {
c.stats = await getCustomerStats(customer.id)
}, { concurrency: 2 });

const customers = awalt getTopCustomers();

awalt pMap(customers, async (c) => {
c.stats = await getCustomerStats(customer.id)
}, { concurrency: 2 });

const custgMmers = await getTopCustomers();

awalt pMap(customers, async (c) => {
c.stats = await getCustomerStats(customer.id)
}, { concurrency: 2 });

A\
|
MaxPeareesOfParallelism

Connection Pool (max = 3)

Connection Pool (max = 3)

Connection Pool (max = 3)

Connection Pool (max = 3)

Connection Pool (max = 3)

Connection Pool (max = 3)

Connection Pool (max = 3)

It doesn’t necessarily complete
faster

“What concurrency limit should | use?”

-You, probably

® Concurrency: 1 => 1,000ms

® Concurrency: 1 => 1,000ms

® Concurrency: 2 => 500ms

® Concurrency: 1 => 1,000ms
® Concurrency: 2 => 500ms

® Concurrency: 4 => 2b50ms

® Concurrency:
® Concurrency:
® Concurrency:

® Concurrency:

1 =>
2 =>
4 =>
8 =>

1,000ms
b00ms,
250ms
125ms

Connection Pool Parameters
Fiddle with these a bit

e Maximum Connection Count
e Minimum Connection Count
e |dle Timeout

e Maximum Lifetime

Tricky: Issue Is systemic

Iricky: Doesn’t reproduce locally

Other Resources

Watch out for these

 Threads
e Disk IO (File Handles)
 TCP Connections / Ports (HTTP Clients)

2 Search by trace ID

i 2 Search by trace ID
shopdemo: get orm/orders = SPANTABLE = f o y
on Services Spans 2)] :
Duration 9.044s | Services 1 Spans 383 Trace ID 79d739306831d1b750e5114181bb60a7 shopdemo: get metrics = SPAN TABLE
oms 3.015s 6.0295 9.044s
I 1 Service name Span name Duration 776.323ms S 1 7 ID 5d0f0f70a79td3217051c47616b3f113
shopdemo get orm/orders
258.774ms 517.549ms 776.323ms N N
Span ID Parent ID == 1 Service name Span name
v 3 B €d339c97181eb73d none shopdemo get metrics
. ots 500 oous Span ID Parent ID
ms s s .044s
R A 25132ee24d884013 none
! Annotation ~ il g o>
shopdemo: posigres = 101.179ms Oms 258.774ms 517.549ms 776.323ms
shopdemo: postgres - 101517ms OmS 3015 50295 9 0dds shopdemo: get metrics 776.323ms Annotation N
shopdemo: postgres 675us shopdemo: postgres 77.135ms - PO e aome
| Start Time 11/13 20:19:12.114 |————] oms 258.774ms 517.549ms 7
shopdemo: postgres 684ps shopdemo: postgres 83.543ms | |
[Oms Value Server Start [—
shopdemo: postgres | 549s shopdemo: postgres 246.759ms Start Time 11/13 20:27:26.415
shopdemo: postres | s81us Address shopdemo shopdemo: posigres 56509ms gmg Value Server Start
— ?
shopdemo: postgres | 441us Start Time 1113 20:19:21.158 shopdemo: posigres — sa78ms Address shopdemo
shopdemo: postgres 467ps 00445 Value Server Finish shopdemo: postgres 224.621ms
| . Start Time 11/13 20:27:27.192
shopdemo: postgres | 454us Add hopd
ress shopdemo
shopdemos postgres | 474ps 776.323ms Value Server Finish
shopdemo: postgres - 95.916ms Address shopdemo
shopdemo: postgres - 96.3a6ms 1398 ~
shopdemo: posigres | 738Ks http.request. method GET Tags A~
shopdemo: postgres 765ps
I filp-response siatus.code 200 http.request.method GET
shopdemo: postgres | 583ys oot ord p-req
p.route orm/orders
shopdemos: postgres 10us http.response.status_code 200
| network.protocol.version 1.1
shopdemo: postgres 510ps http.route metrics
[otel.library.name Microsoft.AspNetCore
shopdemo: postgres 540ps network.protocol.version 1.1
! otel.library.version 0.1.0
shopdemo: postgres | 486y1s otel.library.name Microsoft. AspNetCore
server.address localhost
shopdemo: postgres 502ps .
| otel.library.version 0.1.0
shopdemo: postgres 379us server.port 5109
| server.address localhost
shopdemo: postgres 386 oo instance.id 47d6934-2563-4825-9e64-46
vice.i i
! 949a31781e server.port 5109
- shopdemo: postgres - 93.589ms
S 47df6934-2563-4825-9e64-46
shopdemo: postgres — 93.944ms telemetry.sdk.language dotnet service.instance.id 949a31781e
hopdemo: post 634, telemetry.sdk.name opentelemetry
shopdemo: posigres | Hs telemetry.sdk.language dotnet
shopdemo: postgres 650us telemetry.sdk.version 1.13.1
L telemetry.sdk.name opentelemetry
telemetry.sdk.version 1.13.1

Many Small Spans Large Spans

2 Search by tra
shopdemo: get customer-reports/broken SPANTABLE =
Juration 5.743s Services 1 Tolal Spans 101 Trace ID 732¢78356138831d0663d40dbd2636fa
Oms 1.914s 3.828s 5.743s
I I Service name Span name
K‘ shopdemo get customer-reports/broken
Span ID Parent ID
A v ® > d307ae7e05ff07ee none
Oms 1.914s 3.828s 5.743s
shopdemo: get customer-reports/broken 5743 Annotation ~
shopdemo: postgres 2.124ms
| IOHY\ 1.914s 3.828s 5743‘~‘
shopdemo: postgres 470.656ms | |
——
shopdemo: postgres ' 5.155ms Start Time 11/13 20:32:22.115
shopdemo: postgres 482.422ms oms Value Server Start
h 3
shopdemo: postgres | 2.505ms Address shopdemo
shopdemo: postgres | 445.661ms
r—
shopdemos postgres 1.348ms Start Time 11/13 20:32:27.858
|
shopdemo: postgres 200.024ms 5.743s Value Server Finish
-
shopdemo: postgres 172.975ms Address shopdemo
|
shopdemo: postgres ' 6.944ms
shopdemo: postgres 158.785ms
P postg i— Tags ~
shopdemo: postgres 430.698ms
—
shopdemo: postgres. 453.792ms http.request.method GET
|—
shopdemo: postgres 452.141ms http.response.status_code 200
—
shopdemo: postgres | 549us http.route customer-reports/broken
shopdemo: postgres 151.410ms network.protocol.version 1.1
shopdemo: postgres 220.522ms otel.library.name Microsoft. AspNetCore
h 3 10.22
shopdemo: posigres V 0.229ms otel.library.version 0.1.0
shopdemo: postgres 211.810ms
— server.address localhost
shopdemo: postgres 232.817ms
f— server.port 5109
shopdemo: postgres 8885
! 6dc7ad14-
shopdemo: postgres — 500.488ms service.instance.id d45c-4ee0-8046-659aa6e2bc
shopdemo: postgres 234.056ms 48
J—
shopdemo: postgres 455.814ms telemetry.sdk.language dotnet
———
shopdemo: postgres | 1.444ms telemetry.sdk.name opentelemetry
" 221899,

Span Gaps

Often a lot of low hanging fruit

Database indexing Is easiest to
fix architecturally

N+1 will often have biggest
Impact

