
Matt Burke - https://mattburke.dev

Stop scaling and start tuning

https://mattburke.dev

- JIRA API-52301

“Customer states reports are too slow”

Cloud is a great way to trade $
for performance

Database Size

Re
sp

on
se

 Ti
me

Acceptable Response Time

Database Size

Re
sp

on
se

 Ti
me

Acceptable Response Time

Database Size

Re
sp

on
se

 Ti
me

Acceptable Response Time

Database Size

Re
sp

on
se

 Ti
me

Acceptable Response Time

Paying more is not necessarily
wrong

You can’t outspend O(N²)

Database Size

Re
sp

on
se

 Ti
me

Acceptable Response Time

git checkout -b fix/performance

First things first: Monitoring

Diagnostics
Find your trouble-makers

Establish Baselines
Know you’ve fixed it

Justify the cost
Executives love pretty graphs

There’s a million of them

Pick one and learn it

Spans

Let it bake

Many Small Spans Large Spans

Span Gaps

Many Small Spans Large Spans

Span Gaps

http://localhost:5109/sql/orders

http://localhost:5109/sql/orders

SELECT * FROM orders;

SELECT * FROM order_lines WHERE order_id = 1;
SELECT * FROM order_lines WHERE order_id = 2;
SELECT * FROM order_lines WHERE order_id = 3;
SELECT * FROM order_lines WHERE order_id = 4;
SELECT * FROM order_lines WHERE order_id = 5;
SELECT * FROM order_lines WHERE order_id = 6;
SELECT * FROM order_lines WHERE order_id = 7;
SELECT * FROM order_lines WHERE order_id = 8;
SELECT * FROM order_lines WHERE order_id = 9;
…

N+1

SELECT * FROM orders;

SELECT * FROM order_lines WHERE order_id = 1;
SELECT * FROM order_lines WHERE order_id = 2;
SELECT * FROM order_lines WHERE order_id = 3;
SELECT * FROM order_lines WHERE order_id = 4;
SELECT * FROM order_lines WHERE order_id = 5;
SELECT * FROM order_lines WHERE order_id = 6;
SELECT * FROM order_lines WHERE order_id = 7;
SELECT * FROM order_lines WHERE order_id = 8;
SELECT * FROM order_lines WHERE order_id = 9;
…

SELECT * FROM orders;

SELECT * FROM order_lines WHERE order_id = 1;
SELECT * FROM order_lines WHERE order_id = 2;
SELECT * FROM order_lines WHERE order_id = 3;
SELECT * FROM order_lines WHERE order_id = 4;
SELECT * FROM order_lines WHERE order_id = 5;
SELECT * FROM order_lines WHERE order_id = 6;
SELECT * FROM order_lines WHERE order_id = 7;
SELECT * FROM order_lines WHERE order_id = 8;
SELECT * FROM order_lines WHERE order_id = 9;
…

Cause 1: Architecture

Order[] orders = LoadOrdersFromDb();

foreach (var orders in orders)
{
 order.Lines = LoadLinesFromDb(order.Id);
}

Order[] orders = LoadOrdersFromDb();

foreach (var orders in orders)
{
 order.Lines = LoadLinesFromDb(order.Id);
}

Order[] orders = LoadOrdersFromDb();

foreach (var orders in orders)
{
 order.Lines = LoadLinesFromDb(order.Id);
}

Order[] orders = LoadOrdersFromDb();

foreach (var orders in orders)
{
 order.Lines = LoadLinesFromDb(order.Id);
}

Order[] orders = LoadOrdersFromDb();

foreach (var orders in orders)
{
 order.Lines = LoadLinesFromDb(order.Id);
}

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

Order[] orders = LoadOrdersFromDb();

foreach (var orders in orders)
{
 order.Lines = LoadLinesFromDb(order.Id);
}

Order[] orders = orderRepo.GetAll();

foreach (var orders in orders)
{
 order.Lines = linesRepo.GetAll(order.Id);
}

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

ResponseBuilder

OrderLinesService

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

ResponseBuilder

OrderLinesService

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

ResponseBuilder

OrderLinesService

GET /orders

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

ResponseBuilder

OrderLinesService

GET /orders

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

ResponseBuilder

OrderLinesService

GET /orders?_include=lines

Cause 2: ORM Betrayal

Order[] orders = orderRepo.GetAll();
OrderResponse[] results = [];

foreach (var order in orders)
{
 OrderResponse orderResponse = Map(orders);
 orderResponse.Lines = Map(order.Lines);

 results.Add(orderResponse);
}

Order[] orders = orderRepo.GetAll();
OrderResponse[] results = [];

foreach (var order in orders)
{
 OrderResponse orderResponse = Map(orders);
 orderResponse.Lines = Map(order.Lines);

 results.Add(orderResponse);
}

Order[] orders = orderRepo.GetAll();
OrderResponse[] results = [];

foreach (var order in orders)
{
 OrderResponse orderResponse = Map(orders);
 orderResponse.Lines = Map(order.Lines);

 results.Add(orderResponse);
}

Order[] orders = orderRepo.GetAll();
OrderResponse[] results = [];

foreach (var order in orders)
{
 OrderResponse orderResponse = Map(orders);
 orderResponse.Lines = Map(order.Lines);

 results.Add(orderResponse);
}

Order[] orders = orderRepo.GetAll();
OrderResponse[] results = [];

foreach (var order in orders)
{
 OrderResponse orderResponse = Map(orders);
 orderResponse.Lines = Map(order.Lines);

 results.Add(orderResponse);
}

- Your Senior Developer in the 15th GitHub pull request comment

Do you see the problem?

Order[] orders = orderRepo.GetAll();
OrderResponse[] results = [];

foreach (var order in orders)
{
 OrderResponse orderResponse = Map(orders);
 orderResponse.Lines = Map(order.Lines);

 results.Add(orderResponse);
}

Order[] orders = orderRepo.GetAll();
OrderResponse[] results = [];

foreach (var order in orders)
{
 OrderResponse orderResponse = Map(orders);
 orderResponse.Lines = Map(order.Lines);

 results.Add(orderResponse);
} Another DB query!

Solution 1: Eager Loading

SELECT * FROM orders;

SELECT * FROM order_lines WHERE order_id = 1;
SELECT * FROM order_lines WHERE order_id = 2;
SELECT * FROM order_lines WHERE order_id = 3;
SELECT * FROM order_lines WHERE order_id = 4;
SELECT * FROM order_lines WHERE order_id = 5;
SELECT * FROM order_lines WHERE order_id = 6;
SELECT * FROM order_lines WHERE order_id = 7;
SELECT * FROM order_lines WHERE order_id = 8;
SELECT * FROM order_lines WHERE order_id = 9;
…

SELECT * FROM orders
JOIN order_lines
ON orders.id = order_lines.order_id

SELECT * FROM orders
JOIN order_lines
ON orders.id = order_lines.order_id

dbContext.Orders
 .Include(o => o.Lines)
 .ToList()

“Eager Loading”

“Includes”

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

ResponseBuilder

OrderLinesService

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

ResponseBuilder

OrderLinesService

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

ResponseBuilder

OrderLinesService

- Me

“Ugh, reworking the whole stack to fix this
will get take a million points and make my
PM mad at me”

- Me

“There must be an easier way!”

Solution 2: Batching

SELECT * FROM orders;

SELECT * FROM order_lines
WHERE order_id in (1,2,3,4,5,6,7,8,9,10);

“Split Query”

“Batch Query”

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

ResponseBuilder

OrderLinesService

OrderController

OrdersRepository

OrderService

OrderLinesRepository

Database

ResponseBuilder

OrderLinesService

Teach it “get many by ids”

const orders = orderService.getAll()

const ids = orders.map(o => o.id);

const lines =
 orderLinesService.getByIds(ids);

// TODO: match lines to orders

const orders = orderService.getAll()

const ids = orders.map(o => o.id);

const lines =
 orderLinesService.getByIds(ids);

// TODO: match lines to orders

const orders = orderService.getAll()

const ids = orders.map(o => o.id);

const lines =
 orderLinesService.getByIds(ids);

// TODO: match lines to orders

const orders = orderService.getAll()

const ids = orders.map(o => o.id);

const lines =
 orderLinesService.getByIds(ids);

// TODO: match lines to orders

http://localhost:5109/sql/orders-
split-query

http://localhost:5109/sql/orders-split-query
http://localhost:5109/sql/orders-split-query

Run with SQL Logging Enabled

Disable Lazy Loading

🔫

Order[] orders = orderRepo.GetAll();
OrderResponse[] results = [];

foreach (var order in orders)
{
 OrderResponse orderResponse = Map(orders);
 orderResponse.Lines = Map(order.Lines);

 results.Add(orderResponse);
} Database query!

Order[] orders = orderRepo.GetAll();
OrderResponse[] results = [];

foreach (var order in orders)
{
 OrderResponse orderResponse = Map(orders);
 orderResponse.Lines = Map(order.Lines);

 results.Add(orderResponse);
} null

Drop your ORM and write some
SQL

create table folders (
 id bigserial primary key,
 name text not null,
 parent_id bigint,
 foreign key (parent_id) references folders(id)
);

create table files (
 id bigserial primary key,
 name text not null,
 folder_id bigint,
 size bigint not null,
 foreign key (folder_id) references folders(id)
);

create table folders (
 id bigserial primary key,
 name text not null,
 parent_id bigint,
 foreign key (parent_id) references folders(id)
);

create table files (
 id bigserial primary key,
 name text not null,
 folder_id bigint,
 size bigint not null,
 foreign key (folder_id) references folders(id)
);

Good luck getting your ORM to
search that in one round-trip

with recursive cte as (
 select f.*, name as path
 from folders f where f.parent_id is null

 union all

 select
 f.*,
 cte.path || '/' || f.name as path
 from folders f join cte on f.parent_id = cte.id
)
select files.id, cte.path || '/' || files.name as
path
from cte join files on files.folder_id = cte.id
order by path

with recursive cte as (
 select f.*, name as path
 from folders f where f.parent_id is null

 union all

 select
 f.*,
 cte.path || '/' || f.name as path
 from folders f join cte on f.parent_id = cte.id
)
select files.id, cte.path || '/' || files.name as
path
from cte join files on files.folder_id = cte.id
order by path

Many Small Spans Large Spans

Span Gaps

Many Small Spans Large Spans

Span Gaps

http://localhost:5109/metrics?
range=today

http://localhost:5109/metrics?range=today
http://localhost:5109/metrics?range=today

SELECT
 P.ID AS PRODUCT_ID,
 P.NAME AS PRODUCT_NAME,
 P.SKU,
 SUM(OL.QUANTITY) AS TOTAL_QUANTITY,
 SUM(OL.QUANTITY * OL.UNIT_PRICE) AS TOTAL_REVENUE,
 COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT,
 AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE
FROM
 PRODUCTS P
 INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID
 INNER JOIN ORDERS O ON OL.ORDER_ID = O.ID
WHERE
 O.CREATED_AT >= '2025-12-09'
 AND O.CREATED_AT < '2025-12-11'
GROUP BY
 P.ID,
 P.NAME,
 P.SKU

EXPLAIN SELECT
 P.ID AS PRODUCT_ID,
 P.NAME AS PRODUCT_NAME,
 P.SKU,
 SUM(OL.QUANTITY) AS TOTAL_QUANTITY,
 SUM(OL.QUANTITY * OL.UNIT_PRICE) AS TOTAL_REVENUE,
 COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT,
 AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE
FROM
 PRODUCTS P
 INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID
 INNER JOIN ORDERS O ON OL.ORDER_ID = O.ID
WHERE
 O.CREATED_AT >= '2025-12-09'
 AND O.CREATED_AT < '2025-12-11'
GROUP BY
 P.ID,
 P.NAME,
 P.SKU

http://localhost:8080/browser/

http://localhost:8080/browser/

Limit (cost=147418.55..147418.56 rows=5 width=123)
 -> Sort (cost=147418.55..147418.56 rows=5 width=123)
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate (cost=70450.79..147418.49 rows=5 width=123)
 Group Key: p.id
 -> Incremental Sort (cost=70450.79..147418.33 rows=5 width=61)
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop (cost=51208.96..147418.10 rows=5 width=61)
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
(cost=0.14..15.64 rows=100 width=43)
 -> Materialize (cost=51208.81..147394.97 rows=5 width=26)
 -> Gather (cost=51208.81..147394.95 rows=5 width=26)
 Workers Planned: 2
 -> Parallel Hash Join (cost=50208.81..146394.45
rows=2 width=26)
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
(cost=0.00..89563.83 rows=2522583 width=26)
 -> Parallel Hash (cost=50208.80..50208.80
rows=1 width=8)
 -> Parallel Seq Scan on orders o
(cost=0.00..50208.80 rows=1 width=8)
 Filter: ((created_at >=
'2025-12-09 00:00:00+00'::timestamp with time zone) AND (created_at < '2025-12-11
00:00:00+00'::timestamp with time zone))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

http://localhost:8080/browser/

http://localhost:8080/browser/

LimitSortAggregateIncremental SortNested Loop Inner
Join

pk_products

MaterializeGatherHash Inner Joinorder_lines

Hashorders

LimitSortAggregateIncremental SortNested Loop Inner
Join

pk_products

MaterializeGatherHash Inner Joinorder_lines

Hashorders

LimitSortAggregateIncremental SortNested Loop Inner
Join

pk_products

MaterializeGatherHash Inner Joinorder_lines

Hashorders

Sequential Scan

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Incremental Sort
 Sort Key: p.id, ol.order_id
 Presorted Key: p.id
 -> Nested Loop
 Join Filter: (p.id = ol.product_id)
 -> Index Scan using pk_products on products p
 -> Materialize
 -> Gather
 Workers Planned: 2
 -> Parallel Hash Join
 Hash Cond: (ol.order_id = o.id)
 -> Parallel Seq Scan on order_lines ol
 -> Parallel Hash
 -> Parallel Seq Scan on orders o
 Filter: ((created_at >= ‘2025-12-09'
 AND (created_at < ‘2025-12-11'))

CREATE INDEX idx_orders_created_at
 ON orders (created_at);

CREATE INDEX idx_order_lines_order_id
 ON order_lines (order_id)

CREATE INDEX idx_orders_created_at
 ON orders (created_at);

CREATE INDEX idx_order_lines_order_id
 ON order_lines (order_id)

CREATE INDEX idx_orders_created_at
 ON orders (created_at);

CREATE INDEX idx_order_lines_order_id
 ON order_lines (order_id)

CREATE INDEX idx_orders_created_at
 ON orders (created_at);

CREATE INDEX idx_order_lines_order_id
 ON order_lines (order_id)

CREATE INDEX idx_orders_created_at
 ON orders (created_at);

CREATE INDEX idx_order_lines_order_id
 ON order_lines (order_id)

http://localhost:5109/dev-tools

http://localhost:5109/dev-tools

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Sort
 Sort Key: p.id, ol.order_id
 -> Hash Join
 Hash Cond: (ol.product_id = p.id)
 -> Nested Loop
 -> Index Scan using idx_orders_created_at on orders o
 Index Cond: ((created_at >= ‘2025-12-09')
 AND (created_at < '2025-12-11'))
 -> Index Scan using idx_order_lines_order_id on order_lines ol
 Index Cond: (order_id = o.id)
 -> Hash
 -> Seq Scan on products p

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Sort
 Sort Key: p.id, ol.order_id
 -> Hash Join
 Hash Cond: (ol.product_id = p.id)
 -> Nested Loop
 -> Index Scan using idx_orders_created_at on orders o
 Index Cond: ((created_at >= ‘2025-12-09')
 AND (created_at < '2025-12-11'))
 -> Index Scan using idx_order_lines_order_id on order_lines ol
 Index Cond: (order_id = o.id)
 -> Hash
 -> Seq Scan on products p

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Sort
 Sort Key: p.id, ol.order_id
 -> Hash Join
 Hash Cond: (ol.product_id = p.id)
 -> Nested Loop
 -> Index Scan using idx_orders_created_at on orders o
 Index Cond: ((created_at >= ‘2025-12-09')
 AND (created_at < '2025-12-11'))
 -> Index Scan using idx_order_lines_order_id on order_lines ol
 Index Cond: (order_id = o.id)
 -> Hash
 -> Seq Scan on products p

SELECT
 P.ID AS PRODUCT_ID,
 P.NAME AS PRODUCT_NAME,
 P.SKU,
 SUM(OL.QUANTITY) AS TOTAL_QUANTITY,
 SUM(OL.QUANTITY * OL.UNIT_PRICE) AS TOTAL_REVENUE,
 COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT,
 AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE
FROM
 PRODUCTS P
 INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID
 INNER JOIN ORDERS O ON OL.ORDER_ID = O.ID
WHERE
 O.CREATED_AT >= '2025-12-09'
 AND O.CREATED_AT < '2025-12-11'
GROUP BY
 P.ID,
 P.NAME,
 P.SKU

SELECT
 P.ID AS PRODUCT_ID,
 P.NAME AS PRODUCT_NAME,
 P.SKU,
 SUM(OL.QUANTITY) AS TOTAL_QUANTITY,
 SUM(OL.QUANTITY * OL.UNIT_PRICE) AS TOTAL_REVENUE,
 COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT,
 AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE
FROM
 PRODUCTS P
 INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID
 INNER JOIN ORDERS O ON OL.ORDER_ID = O.ID
WHERE
 O.CREATED_AT >= '2025-12-09'
 AND O.CREATED_AT < '2025-12-11'
GROUP BY
 P.ID,
 P.NAME,
 P.SKU

SELECT
 P.ID AS PRODUCT_ID,
 P.NAME AS PRODUCT_NAME,
 P.SKU,
 SUM(OL.QUANTITY) AS TOTAL_QUANTITY,
 SUM(OL.QUANTITY * OL.UNIT_PRICE) AS TOTAL_REVENUE,
 COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT,
 AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE
FROM
 PRODUCTS P
 INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID
 INNER JOIN ORDERS O ON OL.ORDER_ID = O.ID
WHERE
 O.CREATED_AT >= '2025-12-09'
 AND O.CREATED_AT < '2025-12-11'
GROUP BY
 P.ID,
 P.NAME,
 P.SKU

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Sort
 Sort Key: p.id, ol.order_id
 -> Hash Join
 Hash Cond: (ol.product_id = p.id)
 -> Nested Loop
 -> Index Scan using idx_orders_created_at on orders o
 Index Cond: ((created_at >= ‘2025-12-09')
 AND (created_at < '2025-12-11'))
 -> Index Scan using idx_order_lines_order_id on order_lines ol
 Index Cond: (order_id = o.id)
 -> Hash
 -> Seq Scan on products p

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Sort
 Sort Key: p.id, ol.order_id
 -> Hash Join
 Hash Cond: (ol.product_id = p.id)
 -> Nested Loop
 -> Index Scan using idx_orders_created_at on orders o
 Index Cond: ((created_at >= ‘2025-12-09')
 AND (created_at < '2025-12-11'))
 -> Index Scan using idx_order_lines_order_id on order_lines ol
 Index Cond: (order_id = o.id)
 -> Hash
 -> Seq Scan on products p

Limit
 -> Sort
 Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC
 -> GroupAggregate
 Group Key: p.id
 -> Sort
 Sort Key: p.id, ol.order_id
 -> Hash Join
 Hash Cond: (ol.product_id = p.id)
 -> Nested Loop
 -> Index Scan using idx_orders_created_at on orders o
 Index Cond: ((created_at >= ‘2025-12-09')
 AND (created_at < '2025-12-11'))
 -> Index Scan using idx_order_lines_order_id on order_lines ol
 Index Cond: (order_id = o.id)
 -> Hash
 -> Seq Scan on products p

Index Might Not Be Chosen

Some operations are not
indexable

CREATE INDEX idx_customers_name
 ON customers(“name”);

SELECT
 *
FROM customers
WHERE name ILIKE ‘Matt%’

CREATE INDEX idx_customers_name
 ON customers(“name”);

SELECT
 *
FROM customers
WHERE name ILIKE ‘Matt%’

CREATE INDEX idx_customers_name
 ON customers(“name”);

SELECT
 *
FROM customers
WHERE name ILIKE ‘Matt%’

“Starts With” is easy in a sorted list

CREATE INDEX idx_customers_name
 ON customers(“name”);

SELECT
 *
FROM customers
WHERE name ILIKE ‘%Burke’

“Ends With” not so much

There is such a thing as over-
indexing

 QUERY TEXT
 EXPLAIN OUTPUT

 $10B+ LLM TRAINING

 PRETTY DECENT SUGGESTIONS

Use The Index,
Luke!
Free e-book on database
index tuning by Markus
Winand

Tristan Chiappisi, Indigo Bay @ 8:30

Caffeinate Your Queries: Brew Up Faster
SQL with Tuning

Many Small Spans Large Spans

Span Gaps

Many Small Spans Large Spans

Span Gaps

Many Small Spans Large Spans

Span Gaps

Many Small Spans Large Spans

Span Gaps

Many Small Spans Large Spans

Span Gaps

Nothing happens for 2.4 seconds

http://localhost:5109/customer-
reports/broken?count=5

http://localhost:5109/customer-reports/broken?count=5
http://localhost:5109/customer-reports/broken?count=5

The Connection Pool

Connections are expensive

Connection Pool

Connection Pool

Request 1

Connection Pool

Request 1

Connection Pool

Request 1

Connection Pool

Request 1

Connection Pool

Connection Pool

Request 2

Connection Pool

Request 2

Connection Pool

Request 2

Connection Pool

Connection Pool

Scenario: Many Concurrent
Requests

Connection Pool

Connection Pool

Request 1

Request 2

Request 3

Connection Pool

Request 1

Request 2

Request 3

Connection Pool

Request 1

Request 2

Request 3

Connection Pool

Request 1

Request 2

Request 3

Connection Pool

Connection Pool (max = 3)

Connection Pool (max = 3)

Request 1

Connection Pool (max = 3)

Request 1

Connection Pool (max = 3)

Request 1

Request 2

Connection Pool (max = 3)

Request 1

Request 2

Connection Pool (max = 3)

Request 1

Request 2

const customers = await getTopCustomers();

for (const c of customers) {
 c.stats = await getCustomerStats(customer.id)
}

const customers = await getTopCustomers();

for (const c of customers) {
 c.stats = await getCustomerStats(customer.id)
}

const customers = await getTopCustomers();

for (const c of customers) {
 c.stats = await getCustomerStats(customer.id)
}

getCustomerStats(1)

getCustomerStats(2)

getCustomerStats(3)

getCustomerStats(1)

getCustomerStats(2)

getCustomerStats(3)

const customers = await getTopCustomers();

for (const c of customers) {
 c.stats = await getCustomerStats(customer.id)
}

const customers = await getTopCustomers();

await Promise.all(customers.map(async (c) => {
 c.stats = await getCustomerStats(customer.id)
});

const customers = await getTopCustomers();

await Promise.all(customers.map(async (c) => {
 c.stats = await getCustomerStats(customer.id)
});

const customers = await getTopCustomers();

await Promise.all(customers.map(async (c) => {
 c.stats = await getCustomerStats(customer.id)
});

const customers = await getTopCustomers();

await Promise.all(customers.map(async (c) => {
 c.stats = await getCustomerStats(customer.id)
});

C#: Task.WhenAll

const customers = await getTopCustomers();

await Promise.all(customers.map(async (c) => {
 c.stats = await getCustomerStats(customer.id)
});

Needs N = customers.length connections

from the pool

const customers = await getTopCustomers();

await Promise.all(customers.map(async (c) => {
 c.stats = await getCustomerStats(customer.id)
});

const customers = await getTopCustomers();

await pMap(customers, async (c) => {
 c.stats = await getCustomerStats(customer.id)
}, { concurrency: 2 });

const customers = await getTopCustomers();

await pMap(customers, async (c) => {
 c.stats = await getCustomerStats(customer.id)
}, { concurrency: 2 });

const customers = await getTopCustomers();

await pMap(customers, async (c) => {
 c.stats = await getCustomerStats(customer.id)
}, { concurrency: 2 });

const customers = await getTopCustomers();

await pMap(customers, async (c) => {
 c.stats = await getCustomerStats(customer.id)
}, { concurrency: 2 });

C#: Parallel.ForEachAsync

MaxDegreesOfParallelism

Connection Pool (max = 3)

Request 1 (p-map = 2)

Request 2 (p-map = 2)

Connection Pool (max = 3)

Request 1 (p-map = 2)

Request 2 (p-map = 2)

Connection Pool (max = 3)

Request 1 (p-map = 2)

Request 2 (p-map = 2)

Connection Pool (max = 3)

Request 1 (p-map = 2)

Request 2 (p-map = 2)

Connection Pool (max = 3)

Request 1 (p-map = 2)

Request 2 (p-map = 2)

Connection Pool (max = 3)

Request 1 (p-map = 2)

Request 2 (p-map = 2)

Connection Pool (max = 3)

Request 1 (p-map = 2)

Request 2 (p-map = 2)

It doesn’t necessarily complete
faster

-You, probably

“What concurrency limit should I use?”

• Concurrency: 1 => 1,000ms

• Concurrency: 1 => 1,000ms
• Concurrency: 2 => 500ms

• Concurrency: 1 => 1,000ms
• Concurrency: 2 => 500ms
• Concurrency: 4 => 250ms

• Concurrency: 1 => 1,000ms
• Concurrency: 2 => 500ms,
• Concurrency: 4 => 250ms
• Concurrency: 8 => 125ms

Connection Pool Parameters
Fiddle with these a bit

• Maximum Connection Count

• Minimum Connection Count

• Idle Timeout

• Maximum Lifetime

Tricky: Issue is systemic
The princess is in another castle

Tricky: Doesn’t reproduce locally
We needed a load test

Other Resources
Watch out for these

• Threads

• Disk IO (File Handles)

• TCP Connections / Ports (HTTP Clients)

Many Small Spans Large Spans

Span Gaps

Often a lot of low hanging fruit

Database indexing is easiest to
fix architecturally

N+1 will often have biggest
impact

Feedback Resources

