
Matt Burke - https://mattburke.dev

Stop scaling and start tuning

https://mattburke.dev


- JIRA API-52301

“Customer states reports are too slow”









Cloud is a great way to trade $ 
for performance
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Paying more is not necessarily 
wrong



You can’t outspend O(N²)
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git checkout -b fix/performance







First things first: Monitoring



Diagnostics 
Find your trouble-makers



Establish Baselines 
Know you’ve fixed it



Justify the cost 
Executives love pretty graphs



There’s a million of them



Pick one and learn it



Spans











Let it bake



Many Small Spans Large Spans

Span Gaps



Many Small Spans Large Spans

Span Gaps



http://localhost:5109/sql/orders 

http://localhost:5109/sql/orders


SELECT * FROM orders; 

SELECT * FROM order_lines WHERE order_id = 1;  
SELECT * FROM order_lines WHERE order_id = 2; 
SELECT * FROM order_lines WHERE order_id = 3;  
SELECT * FROM order_lines WHERE order_id = 4;  
SELECT * FROM order_lines WHERE order_id = 5;  
SELECT * FROM order_lines WHERE order_id = 6;  
SELECT * FROM order_lines WHERE order_id = 7;  
SELECT * FROM order_lines WHERE order_id = 8;  
SELECT * FROM order_lines WHERE order_id = 9;  
… 



N+1



SELECT * FROM orders; 

SELECT * FROM order_lines WHERE order_id = 1;  
SELECT * FROM order_lines WHERE order_id = 2; 
SELECT * FROM order_lines WHERE order_id = 3;  
SELECT * FROM order_lines WHERE order_id = 4;  
SELECT * FROM order_lines WHERE order_id = 5;  
SELECT * FROM order_lines WHERE order_id = 6;  
SELECT * FROM order_lines WHERE order_id = 7;  
SELECT * FROM order_lines WHERE order_id = 8;  
SELECT * FROM order_lines WHERE order_id = 9;  
… 



SELECT * FROM orders; 

SELECT * FROM order_lines WHERE order_id = 1;  
SELECT * FROM order_lines WHERE order_id = 2; 
SELECT * FROM order_lines WHERE order_id = 3;  
SELECT * FROM order_lines WHERE order_id = 4;  
SELECT * FROM order_lines WHERE order_id = 5;  
SELECT * FROM order_lines WHERE order_id = 6;  
SELECT * FROM order_lines WHERE order_id = 7;  
SELECT * FROM order_lines WHERE order_id = 8;  
SELECT * FROM order_lines WHERE order_id = 9;  
… 



Cause 1: Architecture



Order[] orders = LoadOrdersFromDb(); 

foreach (var orders in orders) 
{ 
    order.Lines = LoadLinesFromDb(order.Id); 
} 



Order[] orders = LoadOrdersFromDb(); 

foreach (var orders in orders) 
{ 
    order.Lines = LoadLinesFromDb(order.Id); 
} 



Order[] orders = LoadOrdersFromDb(); 

foreach (var orders in orders) 
{ 
    order.Lines = LoadLinesFromDb(order.Id); 
} 



Order[] orders = LoadOrdersFromDb(); 

foreach (var orders in orders) 
{ 
    order.Lines = LoadLinesFromDb(order.Id); 
} 



Order[] orders = LoadOrdersFromDb(); 

foreach (var orders in orders) 
{ 
    order.Lines = LoadLinesFromDb(order.Id); 
} 
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Order[] orders = LoadOrdersFromDb(); 

foreach (var orders in orders) 
{ 
    order.Lines = LoadLinesFromDb(order.Id); 
} 



Order[] orders = orderRepo.GetAll(); 

foreach (var orders in orders) 
{ 
    order.Lines = linesRepo.GetAll(order.Id); 
} 
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GET /orders?_include=lines



Cause 2: ORM Betrayal



Order[] orders = orderRepo.GetAll(); 
OrderResponse[] results = []; 

foreach (var order in orders) 
{ 
 OrderResponse orderResponse = Map(orders); 
 orderResponse.Lines = Map(order.Lines); 

 results.Add(orderResponse); 
} 



Order[] orders = orderRepo.GetAll(); 
OrderResponse[] results = []; 

foreach (var order in orders) 
{ 
 OrderResponse orderResponse = Map(orders); 
 orderResponse.Lines = Map(order.Lines); 

 results.Add(orderResponse); 
} 



Order[] orders = orderRepo.GetAll(); 
OrderResponse[] results = []; 

foreach (var order in orders) 
{ 
 OrderResponse orderResponse = Map(orders); 
 orderResponse.Lines = Map(order.Lines); 

 results.Add(orderResponse); 
} 



Order[] orders = orderRepo.GetAll(); 
OrderResponse[] results = []; 

foreach (var order in orders) 
{ 
 OrderResponse orderResponse = Map(orders); 
 orderResponse.Lines = Map(order.Lines); 

 results.Add(orderResponse); 
} 



Order[] orders = orderRepo.GetAll(); 
OrderResponse[] results = []; 

foreach (var order in orders) 
{ 
 OrderResponse orderResponse = Map(orders); 
 orderResponse.Lines = Map(order.Lines); 

 results.Add(orderResponse); 
} 



- Your Senior Developer in the 15th GitHub pull request comment

Do you see the problem?



Order[] orders = orderRepo.GetAll(); 
OrderResponse[] results = []; 

foreach (var order in orders) 
{ 
 OrderResponse orderResponse = Map(orders); 
 orderResponse.Lines = Map(order.Lines); 

 results.Add(orderResponse); 
} 



Order[] orders = orderRepo.GetAll(); 
OrderResponse[] results = []; 

foreach (var order in orders) 
{ 
 OrderResponse orderResponse = Map(orders); 
 orderResponse.Lines = Map(order.Lines); 

 results.Add(orderResponse); 
} Another DB query!



Solution 1: Eager Loading



SELECT * FROM orders; 

SELECT * FROM order_lines WHERE order_id = 1;  
SELECT * FROM order_lines WHERE order_id = 2; 
SELECT * FROM order_lines WHERE order_id = 3;  
SELECT * FROM order_lines WHERE order_id = 4;  
SELECT * FROM order_lines WHERE order_id = 5;  
SELECT * FROM order_lines WHERE order_id = 6;  
SELECT * FROM order_lines WHERE order_id = 7;  
SELECT * FROM order_lines WHERE order_id = 8;  
SELECT * FROM order_lines WHERE order_id = 9;  
… 



SELECT * FROM orders 
JOIN order_lines  
ON orders.id = order_lines.order_id 



SELECT * FROM orders 
JOIN order_lines  
ON orders.id = order_lines.order_id 



dbContext.Orders 
    .Include(o => o.Lines) 
    .ToList() 



“Eager Loading”



“Includes”
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- Me

“Ugh, reworking the whole stack to fix this 
will get take a million points and make my 
PM mad at me”



- Me

“There must be an easier way!”



Solution 2: Batching



SELECT * FROM orders; 

SELECT * FROM order_lines  
WHERE order_id in (1,2,3,4,5,6,7,8,9,10); 



“Split Query”



“Batch Query”
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Teach it “get many by ids”



const orders = orderService.getAll() 

const ids = orders.map(o => o.id); 

const lines =    
    orderLinesService.getByIds(ids); 

// TODO: match lines to orders 



const orders = orderService.getAll() 

const ids = orders.map(o => o.id); 

const lines =    
    orderLinesService.getByIds(ids); 

// TODO: match lines to orders 



const orders = orderService.getAll() 

const ids = orders.map(o => o.id); 

const lines =    
    orderLinesService.getByIds(ids); 

// TODO: match lines to orders 



const orders = orderService.getAll() 

const ids = orders.map(o => o.id); 

const lines =    
    orderLinesService.getByIds(ids); 

// TODO: match lines to orders 



http://localhost:5109/sql/orders-
split-query 

http://localhost:5109/sql/orders-split-query
http://localhost:5109/sql/orders-split-query


Run with SQL Logging Enabled





Disable Lazy Loading



🔫



Order[] orders = orderRepo.GetAll(); 
OrderResponse[] results = []; 

foreach (var order in orders) 
{ 
 OrderResponse orderResponse = Map(orders); 
 orderResponse.Lines = Map(order.Lines); 

 results.Add(orderResponse); 
} Database query!



Order[] orders = orderRepo.GetAll(); 
OrderResponse[] results = []; 

foreach (var order in orders) 
{ 
 OrderResponse orderResponse = Map(orders); 
 orderResponse.Lines = Map(order.Lines); 

 results.Add(orderResponse); 
} null



Drop your ORM and write some 
SQL



create table folders ( 
    id bigserial primary key, 
    name text not null, 
    parent_id bigint, 
    foreign key (parent_id) references folders(id) 
); 

create table files ( 
    id bigserial primary key, 
    name text not null, 
    folder_id bigint, 
    size bigint not null, 
    foreign key (folder_id) references folders(id) 
);



create table folders ( 
    id bigserial primary key, 
    name text not null, 
    parent_id bigint, 
    foreign key (parent_id) references folders(id) 
); 

create table files ( 
    id bigserial primary key, 
    name text not null, 
    folder_id bigint, 
    size bigint not null, 
    foreign key (folder_id) references folders(id) 
);



Good luck getting your ORM to 
search that in one round-trip



with recursive cte as ( 
    select f.*, name as path  
    from folders f where f.parent_id is null 

    union all 

    select  
        f.*, 
        cte.path || '/' || f.name as path  
    from folders f join cte on f.parent_id = cte.id 
) 
select files.id, cte.path || '/' || files.name as 
path  
from cte join files on files.folder_id = cte.id 
order by path 



with recursive cte as ( 
    select f.*, name as path  
    from folders f where f.parent_id is null 

    union all 

    select  
        f.*, 
        cte.path || '/' || f.name as path  
    from folders f join cte on f.parent_id = cte.id 
) 
select files.id, cte.path || '/' || files.name as 
path  
from cte join files on files.folder_id = cte.id 
order by path 



Many Small Spans Large Spans
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Many Small Spans Large Spans

Span Gaps



http://localhost:5109/metrics?
range=today 

http://localhost:5109/metrics?range=today
http://localhost:5109/metrics?range=today




SELECT 
    P.ID AS PRODUCT_ID, 
    P.NAME AS PRODUCT_NAME, 
    P.SKU, 
    SUM(OL.QUANTITY) AS TOTAL_QUANTITY, 
    SUM(OL.QUANTITY * OL.UNIT_PRICE) AS TOTAL_REVENUE, 
    COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT, 
    AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE 
FROM 
    PRODUCTS P 
    INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID 
    INNER JOIN ORDERS O ON OL.ORDER_ID = O.ID 
WHERE 
    O.CREATED_AT >= '2025-12-09' 
    AND O.CREATED_AT < '2025-12-11' 
GROUP BY 
    P.ID, 
    P.NAME, 
    P.SKU 



EXPLAIN SELECT 
    P.ID AS PRODUCT_ID, 
    P.NAME AS PRODUCT_NAME, 
    P.SKU, 
    SUM(OL.QUANTITY) AS TOTAL_QUANTITY, 
    SUM(OL.QUANTITY * OL.UNIT_PRICE) AS TOTAL_REVENUE, 
    COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT, 
    AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE 
FROM 
    PRODUCTS P 
    INNER JOIN ORDER_LINES OL ON P.ID = OL.PRODUCT_ID 
    INNER JOIN ORDERS O ON OL.ORDER_ID = O.ID 
WHERE 
    O.CREATED_AT >= '2025-12-09' 
    AND O.CREATED_AT < '2025-12-11' 
GROUP BY 
    P.ID, 
    P.NAME, 
    P.SKU 

http://localhost:8080/browser/ 

http://localhost:8080/browser/


Limit  (cost=147418.55..147418.56 rows=5 width=123) 
  ->  Sort  (cost=147418.55..147418.56 rows=5 width=123) 
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  (cost=70450.79..147418.49 rows=5 width=123) 
              Group Key: p.id 
              ->  Incremental Sort  (cost=70450.79..147418.33 rows=5 width=61) 
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  (cost=51208.96..147418.10 rows=5 width=61) 
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
(cost=0.14..15.64 rows=100 width=43) 
                          ->  Materialize  (cost=51208.81..147394.97 rows=5 width=26) 
                                ->  Gather  (cost=51208.81..147394.95 rows=5 width=26) 
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join  (cost=50208.81..146394.45 
rows=2 width=26) 
                                            Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
(cost=0.00..89563.83 rows=2522583 width=26) 
                                            ->  Parallel Hash  (cost=50208.80..50208.80 
rows=1 width=8) 
                                                  ->  Parallel Seq Scan on orders o  
(cost=0.00..50208.80 rows=1 width=8) 
                                                        Filter: ((created_at >= 
'2025-12-09 00:00:00+00'::timestamp with time zone) AND (created_at < '2025-12-11 
00:00:00+00'::timestamp with time zone)) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 

http://localhost:8080/browser/ 
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Sequential Scan



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 









Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



Limit  
  ->  Sort  
        Sort Key: (sum(((ol.quantity)::numeric * ol.unit_price))) DESC 
        ->  GroupAggregate  
              Group Key: p.id 
              ->  Incremental Sort  
                    Sort Key: p.id, ol.order_id 
                    Presorted Key: p.id 
                    ->  Nested Loop  
                          Join Filter: (p.id = ol.product_id) 
                          ->  Index Scan using pk_products on products p  
                          ->  Materialize  
                                ->  Gather  
                                      Workers Planned: 2 
                                      ->  Parallel Hash Join       
                                          Hash Cond: (ol.order_id = o.id) 
                                            ->  Parallel Seq Scan on order_lines ol  
                                            ->  Parallel Hash 
                                                  ->  Parallel Seq Scan on orders o 
                                                        Filter: ((created_at >= ‘2025-12-09'  
                                                             AND (created_at < ‘2025-12-11')) 



CREATE INDEX idx_orders_created_at  
    ON orders (created_at); 

CREATE INDEX idx_order_lines_order_id  
    ON order_lines (order_id)



CREATE INDEX idx_orders_created_at  
    ON orders (created_at); 

CREATE INDEX idx_order_lines_order_id  
    ON order_lines (order_id)



CREATE INDEX idx_orders_created_at  
    ON orders (created_at); 

CREATE INDEX idx_order_lines_order_id  
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                                ->  Seq Scan on products p 
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SELECT 
    P.ID AS PRODUCT_ID, 
    P.NAME AS PRODUCT_NAME, 
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    SUM(OL.QUANTITY * OL.UNIT_PRICE) AS TOTAL_REVENUE, 
    COUNT(DISTINCT OL.ORDER_ID) AS ORDER_COUNT, 
    AVG(OL.UNIT_PRICE) AS AVG_UNIT_PRICE 
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    INNER JOIN ORDERS O ON OL.ORDER_ID = O.ID 
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Index Might Not Be Chosen



Some operations are not 
indexable



CREATE INDEX idx_customers_name 
  ON customers(“name”); 

SELECT  
  *  
FROM customers  
WHERE name ILIKE ‘Matt%’ 
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CREATE INDEX idx_customers_name 
  ON customers(“name”); 

SELECT  
  *  
FROM customers  
WHERE name ILIKE ‘Matt%’ 

“Starts With” is easy in a sorted list



CREATE INDEX idx_customers_name 
  ON customers(“name”); 

SELECT  
  *  
FROM customers  
WHERE name ILIKE ‘%Burke’ 

“Ends With” not so much





There is such a thing as over-
indexing



   
  

         QUERY TEXT 
              EXPLAIN OUTPUT 

     $10B+ LLM TRAINING 

   PRETTY DECENT SUGGESTIONS 



Use The Index, 
Luke!
Free e-book on database 
index tuning by Markus 
Winand



Tristan Chiappisi, Indigo Bay @ 8:30

Caffeinate Your Queries: Brew Up Faster 
SQL with Tuning



Many Small Spans Large Spans

Span Gaps
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Many Small Spans Large Spans

Span Gaps

Nothing happens for 2.4 seconds



http://localhost:5109/customer-
reports/broken?count=5 

http://localhost:5109/customer-reports/broken?count=5
http://localhost:5109/customer-reports/broken?count=5


The Connection Pool



Connections are expensive



Connection Pool
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Scenario: Many Concurrent 
Requests
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Connection Pool (max = 3)
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Request 2
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const customers = await getTopCustomers(); 

await Promise.all(customers.map(async (c) => { 
  c.stats = await getCustomerStats(customer.id) 
}); 

C#: Task.WhenAll







const customers = await getTopCustomers(); 

await Promise.all(customers.map(async (c) => { 
  c.stats = await getCustomerStats(customer.id) 
}); 

Needs N = customers.length connections  

from the pool 
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}); 
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const customers = await getTopCustomers(); 

await pMap(customers, async (c) => { 
  c.stats = await getCustomerStats(customer.id) 
}, { concurrency: 2 }); 

C#: Parallel.ForEachAsync

MaxDegreesOfParallelism
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Connection Pool (max = 3)

Request 1 (p-map = 2)

Request 2 (p-map = 2)



It doesn’t necessarily complete 
faster



-You, probably

“What concurrency limit should I use?”



• Concurrency: 1 => 1,000ms



• Concurrency: 1 => 1,000ms 
• Concurrency: 2 => 500ms



• Concurrency: 1 => 1,000ms 
• Concurrency: 2 => 500ms 
• Concurrency: 4 => 250ms



• Concurrency: 1 => 1,000ms 
• Concurrency: 2 => 500ms, 
• Concurrency: 4 => 250ms 
• Concurrency: 8 => 125ms



Connection Pool Parameters
Fiddle with these a bit

• Maximum Connection Count


• Minimum Connection Count


• Idle Timeout


• Maximum Lifetime



Tricky: Issue is systemic 
The princess is in another castle



Tricky: Doesn’t reproduce locally 
We needed a load test



Other Resources
Watch out for these

• Threads


• Disk IO (File Handles)


• TCP Connections / Ports (HTTP Clients)



Many Small Spans Large Spans

Span Gaps



Often a lot of low hanging fruit



Database indexing is easiest to 
fix architecturally



N+1 will often have biggest 
impact



Feedback Resources


